Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 3, pp 1125–1130 | Cite as

Influence of Solid Solution Hardening on Creep Properties of Single-Crystal Nickel-Based Superalloys

  • Ernst Fleischmann
  • Christian Konrad
  • Johannes Preußner
  • Rainer Völkl
  • Ernst Affeldt
  • Uwe Glatzel
Article

Abstract

Improving the creep resistance of the matrix by alloying with refractory elements is a major strengthening effect in nickel-based superalloy with rhenium as one of the most effective elements. In this work, the influence of rhenium on creep properties of single-phase single crystals with varying rhenium content and matrix-near composition is investigated. The use of single-crystalline material leads to very distinct results which are not deteriorated by grain boundary effects. So the strengthening effect can be solely attributed to the alloying element rhenium and is quantified for the first time. By comparing the creep strength of two matrix compositions with the corresponding single-crystal superalloys using the threshold stress concept, the potential of creep strengthening of the matrix in two-phase single-crystal alloys is quantified.

Keywords

Rhenium Creep Behavior Creep Resistance Matrix Alloy Creep Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the Bundesministerium für Wirtschaft und Technologie and MTU Aero Engines AG for funding this work within Lufo 4/3 - AP2.3.

References

  1. 1.
    C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds.: Superalloys II: High Temperature Materials for Aerospace and Industrial Power, 2nd. ed., WileyBlackwell, New York, 1987.Google Scholar
  2. 2.
    T. Khan: in High Temperature Alloys for Gas Turbines and Other Applications, Part I, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kvernes, Y. Lindblom, J.B. Marriot, D.B. Meadowcroft eds., D. Reidel Publishing Company, Dordrecht, Holland, 1986, pp. 21–50.Google Scholar
  3. 3.
    M.V. Nathal: Metall. Trans. A, 1987, vol. 18A, pp. 1961-1970.CrossRefGoogle Scholar
  4. 4.
    T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada: Acta Mater., 2004, vol. 52, pp. 3737-3744.CrossRefGoogle Scholar
  5. 5.
    K. Harris, G.L. Erickson, S.L. Sikkenga, W.D. Brentnall, J.M. Aurrecoechea, K.G. Kubarych: J. Mater. Eng. Perform., 1993, vol. 2, pp. 481-487.CrossRefGoogle Scholar
  6. 6.
    A.K. Jena, M.C. Chaturvedi: Review - The Role of Alloying Elements in the Design of Nickel-base Superalloys, Journal of Materials Science 19 (1984) 3121-3139.CrossRefGoogle Scholar
  7. 7.
    A.D. Cetel and D.N. Duhl: in Superalloys 1988, S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, and C. Lund, eds., TMS, Warrendale, 1988, pp. 235–44.Google Scholar
  8. 8.
    P.J. Fink, J.L. Miller, D.G. Konitzer: JOM, 2010, vol. 62, pp. 55-57.CrossRefGoogle Scholar
  9. 9.
    C.M.F. Rae, R.C. Reed: Acta mater., 2001, vol. 49, pp. 4113-4125.CrossRefGoogle Scholar
  10. 10.
    K. Kawagishi, H. Harada, A. Sato, A. Sato, T. Kobayashi: JOM, 2006, vol. 58, pp. 43-46.CrossRefGoogle Scholar
  11. 11.
    K. Harris and G.L. Erickson: U.S. Patent 4,643,782, 1987.Google Scholar
  12. 12.
    B. Sundman, B. Jansson, J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153-190.CrossRefGoogle Scholar
  13. 13.
    N. Saunders, M. Fahrmann, and C.J. Small: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra eds., TMS, Warrendale, 2000, pp. 803–11.Google Scholar
  14. 14.
    N. Wanderka, U. Glatzel: Mater. Sci. Eng. A, 1995, vol. 203A, pp. 69-74.CrossRefGoogle Scholar
  15. 15.
    K. Harris, G.L. Erickson, and R.E. Schwer: in Superalloys 1984, M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich eds., TMS, Warrendale, 1984, pp. 221–230.Google Scholar
  16. 16.
    C.H. Konrad, M. Brunner, K. Kyrgyzbaev, R. Völkl, U. Glatzel: J. Mater. Process. Technol., 2011, vol. 211, pp. 181-186.CrossRefGoogle Scholar
  17. 17.
    M. Bensch, E. Fleischmann, C. Konrad, R. Völkl, C.M.F. Rae, and U. Glatzel: in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman eds., TMS, Warrendale, 2012, pp. 387–94.Google Scholar
  18. 18.
    C. Schulze, M. Feller-Kniepmeier: Mater. Sci. Eng. A, 2000, vol. 281A, pp. 204-212.CrossRefGoogle Scholar
  19. 19.
    T.M. Pollock, A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1-30.CrossRefGoogle Scholar
  20. 20.
    B.C. Wilson, J.A. Hickman, G.E. Fuchs: JOM, 2003, vol. 55, pp. 35-40.CrossRefGoogle Scholar
  21. 21.
    M. Brunner, M. Bensch, R. Völkl, E. Affeldt, U. Glatzel: Mater. Sci. Eng. A, 2012, 550A, pp. 254-262.CrossRefGoogle Scholar
  22. 22.
    R. Völkl, D. Freund, B. Fischer: J. Test. Eval., 2003, vol. 31, pp. 35-43.Google Scholar
  23. 23.
    R. Völkl, B. Fischer: Exp. Mech., 2004, vol. 44(2), pp. 121-128.CrossRefGoogle Scholar
  24. 24.
    R. Lagneborg, B. Bergman: Met. Sci., 1976, vol. 10, pp. 20-28.CrossRefGoogle Scholar
  25. 25.
    W. Schneider, J. Hammer, and H. Mughrabi: in Superalloys 1992, S.D. Antolovich, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom eds., TMS, Warrendale, 1992, pp. 589–98.Google Scholar
  26. 26.
    M.V. Nathal, R.A. MacKay: Mater. Sci. Eng., 1987, vol. 85, pp. 127-138.CrossRefGoogle Scholar
  27. 27.
    P. Caron, T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173-184.CrossRefGoogle Scholar
  28. 28.
    J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623-4633.CrossRefGoogle Scholar
  29. 29.
    D. Siebörger, H. Knake, U. Glatzel: Mater. Sci. Eng. A, 2001, vol. 298A, pp. 26-33.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Ernst Fleischmann
    • 1
  • Christian Konrad
    • 1
  • Johannes Preußner
    • 2
  • Rainer Völkl
    • 1
  • Ernst Affeldt
    • 3
  • Uwe Glatzel
    • 1
  1. 1.Metals and AlloysUniversity BayreuthBayreuthGermany
  2. 2.Fraunhofer-Institut für Werkstoffmechanik IWMFreiburgGermany
  3. 3.MTU Aero Engines AGMunichGermany

Personalised recommendations