Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 3, pp 1073–1084 | Cite as

Phase-Field Modeling for Intercritical Annealing of a Dual-Phase Steel

  • Benqiang ZhuEmail author
  • Matthias Militzer
Article

Abstract

A phase-field model has been developed to describe microstructure evolution during intercritical annealing of a commercial DP600 dual-phase steel. The simulations emphasize the interaction between ferrite recrystallization and austenite formation from a cold-rolled pearlite/ferrite microstructure at high heating rates. The austenite-ferrite transformations are assumed to occur under conditions where only carbon partitions between the phases by long-range diffusion. A solute drag model has been integrated with the phase-field model to describe the effect of substitutional alloying elements on the migration of the ferrite/austenite interface. Experimental results including recrystallization and transformation kinetics as well as austenite morphology have been successfully described by carefully adjusting both the austenite nucleation scenario and the interface mobilities.

Keywords

Ferrite Austenite Pearlite Intercritical Annealing Austenite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) and ArcelorMittal Dofasco Inc. for their financial support. They thank W.J. Poole and M. Kulakov for many stimulating discussions.

References

  1. 1.
    C. Bos, M.G. Mecozzi, D.N. Hanlon, M.P. Aarnts, and J. Sietsma: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3602–10.CrossRefGoogle Scholar
  2. 2.
    D. Liu, F. Fazeli, and M. Militzer: ISIJ Int., 2007, vol. 47, pp. 1789–98.CrossRefGoogle Scholar
  3. 3.
    D. Bombac, M.J. Peet, S. Zenitani, S. Kimura, T. Kurimura, and H.K.D.H. Bhadeshia: Model. Simul. Mater. Sci. Eng., 2014, vol. 22, p. 045005(14).Google Scholar
  4. 4.
    C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692–99.CrossRefGoogle Scholar
  5. 5.
    J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2516–25.CrossRefGoogle Scholar
  6. 6.
    M. Kulakov, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3564–76.CrossRefGoogle Scholar
  7. 7.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Metall. Mater. Trans. A, 2010, vol. 42A, pp. 1544–57.Google Scholar
  8. 8.
    J. Huang, W. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.CrossRefGoogle Scholar
  9. 9.
    C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504–17.CrossRefGoogle Scholar
  10. 10.
    M. Kulakov: Ph.D. Thesis, University of British Columbia, Vancouver, Canada, 2013.Google Scholar
  11. 11.
    I. Steinbach and F. Pezzolla: Phys. Nonlinear Phenom.., 1999, vol. 134 (4), pp. 385–93.Google Scholar
  12. 12.
    J. Eiken, B. Böttger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73 (6), p. 066122(9).Google Scholar
  13. 13.
    B. Zhu and M. Militzer: Model. Simul. Mater. Sci. Eng., 2012, vol. 20 (8), p. 085011(17).Google Scholar
  14. 14.
    A. Godfrey, N. Hansen, and D. Juul Jensen: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2329–39.CrossRefGoogle Scholar
  15. 15.
    M. Kulakov: The University of British Columbia, Vancouver, Canada, Private Communication, 2014.Google Scholar
  16. 16.
    D. Raabe and L. Hantcherli: Comput. Mater. Sci., 2005, vol. 34, no. 4, pp. 299–313.CrossRefGoogle Scholar
  17. 17.
    D. Raabe and R.C. Becker: Model. Simul. Mater. Sci. Eng., 2000, vol. 8, no. 4, p. 445.CrossRefGoogle Scholar
  18. 18.
    D. Raabe: Annu. Rev. Mater. Res., 2002, vol. 32, no. 1, pp. 53–76.CrossRefGoogle Scholar
  19. 19.
    M. Sánchez-Araiza, S. Godet, P.J. Jacques, and J.J. Jonas: Acta Mater., 2006, vol. 54, no. 11, pp. 3085–93.CrossRefGoogle Scholar
  20. 20.
    V. Savran, S. Offerman, and J. Sietsma: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 583–91.CrossRefGoogle Scholar
  21. 21.
    H.I. Aaronson, W.F. Lange III, and G.R. Purdy: Scripta Mater., 2004, vol. 51, no. 9, pp. 931–35.CrossRefGoogle Scholar
  22. 22.
    I. Lischewski and G. Gottstein: Acta Mater., 2011, vol. 59, no. 4, pp. 1530–41.CrossRefGoogle Scholar
  23. 23.
    J. Warren, T. Pusztai, L. Környei, and L. Gránásy: Phys. Rev. B, 2009, vol. 79, no. 1, p. 014204.CrossRefGoogle Scholar
  24. 24.
    L. Gránásy, T. Pusztai, D. Saylor, and J. Warren: Phys. Rev. Lett., 2007, vol. 98, no. 3, p. 035703.CrossRefGoogle Scholar
  25. 25.
    M. Militzer: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, no. 3, pp. 106–15.CrossRefGoogle Scholar
  26. 26.
    M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, no. 8, pp. 731–43.CrossRefGoogle Scholar
  27. 27.
    J.W. Cahn: Acta Metall., 1962, vol. 10, no. 9, pp. 789–98.CrossRefGoogle Scholar
  28. 28.
    G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, no. 10, pp. 3763–74.CrossRefGoogle Scholar
  29. 29.
    T. Jia and M. Militzer: ISIJ Int., 2012, vol. 52, no. 4, pp. 644–49.CrossRefGoogle Scholar
  30. 30.
    H. Chen, K. Zhu, L. Zhao, and S. van der Zwaag: Acta Mater., 2013, vol. 61, no. 14, pp. 5458–68.CrossRefGoogle Scholar
  31. 31.
    R.G. Thiessen, J. Sietsma, T.A. Palmer, J.W. Elmer, and I.M. Richardson: Acta Mater., 2007, vol. 55, no. 2, pp. 601–14.CrossRefGoogle Scholar
  32. 32.
    G. Speich, V. Demarest, and R. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.CrossRefGoogle Scholar
  33. 33.
    W. Song, P.-P. Choi, G. Inden, U. Prahl, D. Raabe, and W. Bleck: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 595–606.CrossRefGoogle Scholar
  34. 34.
    Y.J. Lan, N.M. Xiao, D.Z. Li, and Y.Y. Li: Acta Mater., 2005, vol. 53, no. 4, pp. 991–1003.CrossRefGoogle Scholar
  35. 35.
    D. Yang, E. Brown, D. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.The Center for Metallurgical Process EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations