Metallurgical and Materials Transactions A

, Volume 46, Issue 2, pp 926–936 | Cite as

Phase-Field Model for Mixed-Mode of Growth Applied to Austenite to Ferrite Transformation

Article

Abstract

A thermodynamically consistent phase-field model is formulated for binary-alloy, particularly applicable to the systems which have a significant difference in mobilities of the solute and solvent atoms, e.g., interstitial solutes. The model is based on the mixed-mode of growth which is considered to be the general mode of transformation. As an illustration, the model has been used to simulate austenite to ferrite transformation in one-dimension. The model is made ‘quantitative’ using a different diffusivity-interpolation function without using anti-trapping flux term. The simulation-result is compared with the experimental results, and good agreement with the mixed-mode of growth in the initial stage of the transformation (when the individual nuclei are far apart) has been observed.

References

  1. 1.
    C. Zener, J Appl Phys 20, 950–53 (1949)CrossRefGoogle Scholar
  2. 2.
    J. Ågren, J Phys Chem Solids 43, 385–391 (1982)CrossRefGoogle Scholar
  3. 3.
    M. Enomoto, ISIJ Int 32, 297–305 (1992)CrossRefGoogle Scholar
  4. 4.
    S. te Velthuis, N. van Dijk, M. Rekveldt, J. Sietsma, S. van der Zwaag, Mater Sci Eng: A 277, 218–28 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Sietsma, S. van der Zwaag, Acta Mater. 52, 4143–52 (2004)CrossRefGoogle Scholar
  6. 6.
    S.L. Sobolev, Phys. Rev. E 55, 6845–54 (1997)CrossRefGoogle Scholar
  7. 7.
    S. Sobolev, Acta Mater. 60, 2711–18 (2012)CrossRefGoogle Scholar
  8. 8.
    S.L. Wang, R. Sekerka, A. Wheeler, B. Murray, S. Coriell, R. Braun. Phys D 69, 189–200 (1993)CrossRefGoogle Scholar
  9. 9.
    O. Penrose, P.C. Fife, Phys. D 43, 44–62 (1990)CrossRefGoogle Scholar
  10. 10.
    R. Kobayashi, Phys. D 63, 410–23 (1993)CrossRefGoogle Scholar
  11. 11.
    A. Wheeler, B. Murray, R. Schaefer, Phys. D 66, 243–62 (1993)CrossRefGoogle Scholar
  12. 12.
    A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phys Rev A 45, 7424–39 (1992)CrossRefGoogle Scholar
  13. 13.
    G. Caginalp, W. Xie, Phys. Rev. E 48, 1897–909 (1993)CrossRefGoogle Scholar
  14. 14.
    I. Loginova, G. Amberg, and J. Ågren: Acta Mater., 2001, vol. 49, 573–81.CrossRefGoogle Scholar
  15. 15.
    A.M. Mullis, Phys. Rev. E 83, 061601-1–061601-9 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Rosam, P. Jimack, A. Mullis, Acta Mater. 56, 4559–69 (2008)CrossRefGoogle Scholar
  17. 17.
    S.G. Kim, W.T. Kim, T. Suzuki, Phys. Rev. E 60, 7186–97 (1999)CrossRefGoogle Scholar
  18. 18.
    B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E 70, 061604 (2004)CrossRefGoogle Scholar
  19. 19.
    S.L. Wang, R.F. Sekerka, J. Comput. Phys. 127, 110–7 (1996)CrossRefGoogle Scholar
  20. 20.
    J. Warren, W. Boettinger, Acta Metall. Mater. 43, 689–703 (1995)CrossRefGoogle Scholar
  21. 21.
    R.F. Almgren, SIAM J Appl Math 59, 2086–107 (1999)CrossRefGoogle Scholar
  22. 22.
    M. Ohno, K. Matsuura, Phys. Rev. E 79, 031603–18 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Shih, M. Lee, C. Lan, J Cryst Growth 282, 515–24 (2005)CrossRefGoogle Scholar
  24. 24.
    P.K. Galenko, E.V. Abramova, D. Jou, D.A. Danilov, V.G. Lebedev, D.M. Herlach, Phys. Rev. E 84, 041143–60 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Militzer, M. Mecozzi, J. Sietsma, S. van der Zwaag, Acta Mater. 54, 3961–72 (2006)CrossRefGoogle Scholar
  26. 26.
    I. Loginova, J. Ågren, and G. Amberg: Acta Mater., 2004, vol. 52, pp. 4055–63.Google Scholar
  27. 27.
    C.J. Huang, D.J. Browne, S. McFadden, Acta Mater. 54, 11–21 (2006)CrossRefGoogle Scholar
  28. 28.
    Z.K. Liu, Acta Mater. 44, 3855–67 (1996)CrossRefGoogle Scholar
  29. 29.
    J. Svoboda, F. Fischer, P. Fratzl, E. Gamsjger, N. Simha, Acta Mater. 49, 1249–59 (2001)CrossRefGoogle Scholar
  30. 30.
    M.J. Aziz, T. Kaplan, Acta Metall 36, 2335–47 (1988)CrossRefGoogle Scholar
  31. 31.
    J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1981.Google Scholar
  32. 32.
    M. Hillert, Acta Mater. 47, 4481–505 (1999)CrossRefGoogle Scholar
  33. 33.
    G.P. Krielaart, J. Sietsma, S. van der Zwaag, Mater. Sci. Eng. A 237, 216–23 (1997)CrossRefGoogle Scholar
  34. 34.
    R. Trivedi, Metall Trans 1, 921–927 (1970)Google Scholar
  35. 35.
    G. Horvay, J. Cahn, Acta Metall 9(7), 695–705 (1961)CrossRefGoogle Scholar
  36. 36.
    S.M. Allen, J.W. Cahn, Acta Metall 27, 1085–95 (1979)CrossRefGoogle Scholar
  37. 37.
    M. Dorr, J.L. Fattebert, M. Wickett, J. Belak, P. Turchi, J. Comput. Phys. 229, 626–41 (2010)CrossRefGoogle Scholar
  38. 38.
    I. Steinbach, L. Zhang, M. Plapp, Acta Mater. 60(67), 2689–2701 (2012)CrossRefGoogle Scholar
  39. 39.
    P.C. Fife: Dynamics of Internal Layers and Diffusive Interfaces, Society for Industrial and Applied Mathematics, Philadelphia, 1988.Google Scholar
  40. 40.
    J. Wits, T. Kop, Y. van Leeuwen, J. Seitsma, S. van der Zwaag, Mater. Sci. Eng. A 283, 234–41 (2000)CrossRefGoogle Scholar
  41. 41.
    J. Bradley, J. Rigsbee, H. Aaronson, Metall Trans A 8, 323–33 (1977)CrossRefGoogle Scholar
  42. 42.
    W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publication, Switzerland, 1985Google Scholar
  43. 43.
    P. Gustafson, Scand J Metall 14, 259–67 (1985)Google Scholar
  44. 44.
    H. Bhadeshia, Metal Science 16, 159–65 (1982)CrossRefGoogle Scholar
  45. 45.
    A. Dinsdale, Calphad 15, 317–425 (1991)CrossRefGoogle Scholar
  46. 46.
    S.G. Kim, Acta Mater. 55, 4391–99 (2007)CrossRefGoogle Scholar
  47. 47.
    N.A. Ahmad, A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phys. Rev. E 58, 3436–50 (1998)CrossRefGoogle Scholar
  48. 48.
    Y. Lan, D. Li, Y. Li, J Mater Res 19, 2877–2886 (2004)CrossRefGoogle Scholar
  49. 49.
    M. Onink, F. Tichelaar, C. Brakman, E. Mittemeijer, S. Zwaag, J Mater Sci 30, 6223–34 (1995)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Avisor Bhattacharya
    • 1
    • 3
  • C. S. Upadhyay
    • 2
  • S. Sangal
    • 1
  1. 1.Department of Materials Science and EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Department of Aerospace EngineeringIndian Institute of TechnologyKanpurIndia
  3. 3.Karlsruhe Institute of Technology, Institute of Applied MaterialsKarlsruheGermany

Personalised recommendations