Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 2, pp 903–914 | Cite as

The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution

  • Sanjay Kumar Vajpai
  • Mie Ota
  • Tomoyuki Watanabe
  • Ryo Maeda
  • Tatsuya Sekiguchi
  • Takayuki Kusaka
  • Kei Ameyama
Article

Abstract

The present work deals with the strengthening of Ti-6Al-4V alloy by creating a unique microstructure with bimodal grain size distribution, termed as “harmonic structure.” The Ti-6Al-4V compacts with harmonic structure design were successfully prepared via a powder metallurgy approach consisting of controlled mechanical milling and spark plasma sintering of the pre-alloyed Ti-6Al-4V powders. The microstructural evolution at each stage of processing has been investigated to establish a correlation between the processing conditions and the microstructural evolution. The Ti-6Al-4V compacts with heterogeneous harmonic structure exhibited better mechanical properties as compared to their homogeneous fine/coarse-grained counterparts. An attempt has also been made to explain the deformation mechanism of the harmonic-structured Ti-6Al-4V specimens with the help of the experimental evidences. The superior mechanical properties of the harmonic structure Ti-6Al-4V were found to be related to the peculiar topological distribution of strong fine-grained and ductile coarse-grained regions, which promotes uniform distribution of strain during plastic deformation and results in improved mechanical properties by avoiding the localized plastic deformation in the early stages of deformation.

Keywords

Digital Image Correlation Spark Plasma Sinter Severe Plastic Deformation Milled Powder Sintered Compact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Japan Science and Technology Agency (JST) under Collaborative Research Based on Industrial Demand “Heterogeneous Structure Control: Toward Innovative Development of Metallic Structural Materials,” and by the Grant-in-Aid for Scientific Research on Innovative Area, “Bulk Nanostructured Metals,” through MEXT, Japan (contract No. 22102004). These supports are gratefully appreciated.

References

  1. 1.
    R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103-114.CrossRefGoogle Scholar
  2. 2.
    C. Leyens and M. Peters: Titanium and Titanium Alloys - Fundamentals and Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003, pp. 1-496.CrossRefGoogle Scholar
  3. 3.
    R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994, pp. 483-636.Google Scholar
  4. 4.
    M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.CrossRefGoogle Scholar
  5. 5.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743-5774.CrossRefGoogle Scholar
  6. 6.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-189.CrossRefGoogle Scholar
  7. 7.
    R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 899-918.CrossRefGoogle Scholar
  8. 8.
    S. Tamirisakandala, R.B. Bhat, V.A. Ravi, D.B. Miracle, JOM, 2004, vol. 56, pp. 60–63.CrossRefGoogle Scholar
  9. 9.
    W. Zhang, W. Zhao, D. Li, and M. Sui: Int. J. Mater. Res., 2006, vol. 97, pp. 1143-1151.CrossRefGoogle Scholar
  10. 10.
    J.Y. Kim, K.T. Park, I.O. Shim, and S.H. Hong: Mater. Trans., 2008, vol. 49, pp. 215-223.CrossRefGoogle Scholar
  11. 11.
    J.L.W. Warwick, N.G. Jones, I. Bantounas, M. Preuss, and D. Dye: Acta Mater., 2013, vol. 61, pp. 1603-1615.CrossRefGoogle Scholar
  12. 12.
    I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch: Metall. Trans. A, 1986, vol. 17A, pp. 1935-1947.CrossRefGoogle Scholar
  13. 13.
    Q. Chao, P.D. Hodgson, and H. Beladi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2659-2671.CrossRefGoogle Scholar
  14. 14.
    S. Zgerebtsov, M. Murzinova, G. Salishchev, and S.L. Semiatin: Acta Mater., 2011, vol. 59, pp. 4138-4150.CrossRefGoogle Scholar
  15. 15.
    A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Scripta Mater., 2000, vol. 43, pp. 819-824.CrossRefGoogle Scholar
  16. 16.
    R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, and A.K. Mukherjee: Mater. Sci. Eng. A, 2001, vol. 298, pp. 44-50.CrossRefGoogle Scholar
  17. 17.
    G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, F.H. Froes, and O.A. Kaibyshev: J. Mater. Proc. Tech., 2001, vol. 116, pp. 265-268.CrossRefGoogle Scholar
  18. 18.
    A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 318-325.CrossRefGoogle Scholar
  19. 19.
    S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, and S.L. Semiatin: Scipta Mater., 2004, vol. 51, pp. 1147-1151.CrossRefGoogle Scholar
  20. 20.
    Y.G. Ko, C.S. Lee, D.H. Shin, and S.I. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 381-391.CrossRefGoogle Scholar
  21. 21.
    S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, and G. Salishchev: Mater. Sci. Eng. A, 2012, vol. 536, pp. 190-195.CrossRefGoogle Scholar
  22. 22.
    Y. Long, H. Zhang, T. Wang, X. Huang, Y. Li, J. Wu, and H. Chen: Mater. Sci. Eng. A, 2013, vol. 585, pp. 408-414.CrossRefGoogle Scholar
  23. 23.
    S.V.S.N. Murty, N. Nayan, P. Kumar, P.R. Narayanan, S.C. Sharma, and K.M. George: Mater. Sci. Eng. A, 2014, vol. 589, pp. 174-181.CrossRefGoogle Scholar
  24. 24.
    Y. Long, T. Wang, H.Y. Zhang, and X.L. Huang: Mater. Sci. Eng. A, 2014, vol. 608, pp. 82-89.CrossRefGoogle Scholar
  25. 25.
    Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912-915.CrossRefGoogle Scholar
  26. 26.
    D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Scripta Mater., 2003, vol. 49, pp. 297-302.CrossRefGoogle Scholar
  27. 27.
    Y.M. Wang and E. Ma: Acta Mater., 2004, vol. 52, pp. 1699-1709.CrossRefGoogle Scholar
  28. 28.
    Y.M. Wang and E. Ma: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 46-52.CrossRefGoogle Scholar
  29. 29.
    H. Jin and D.J. Lloyd: Scripta Mater., 2004, vol. 50, pp. 1319–1323.CrossRefGoogle Scholar
  30. 30.
    S. Joshi, K. Ramesh, B. Han, and E. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2397-2404.CrossRefGoogle Scholar
  31. 31.
    B. Srinivasarao, K. Oh-ishi, T. Ohkubo, T. Mukai, and K. Hono: Scripta Mater., 2008, vol. 58, pp. 759–762.CrossRefGoogle Scholar
  32. 32.
    G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia: Acta Mater., 2006, vol. 54, pp. 1759-1766.CrossRefGoogle Scholar
  33. 33.
    G. Dirras, J. Gubicza, S. Ramtani, Q.H. Bui, and T. Szilagyi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1206-1214.CrossRefGoogle Scholar
  34. 34.
    H. Fujiwara, R. Akada, A. Noro, Y. Yoshita, and K. Ameyama: Mater. Trans., 2008, vol. 49, pp. 90-96.CrossRefGoogle Scholar
  35. 35.
    T. Sekiguchi, K. Ono, H. Fujiwara, and K. Ameyama: Mater. Trans., 2010, vol. 51, pp. 39-45.CrossRefGoogle Scholar
  36. 36.
    D.Orlov, H.Fujiwara, and K.Ameyama: Mater. Trans., 2013, vol. 54, pp. 1549–1553.CrossRefGoogle Scholar
  37. 37.
    O.P. Ciuca, M. Ota, S. Deng, and K. Ameyama: Mater. Trans., 2013, vol. 54, pp. 1629-1633.CrossRefGoogle Scholar
  38. 38.
    C. Sawangrat, O. Yamaguchi, S.K. Vajpai, and K. Ameyama: Mater. Trans., 2014, vol. 55, pp. 99-105.CrossRefGoogle Scholar
  39. 39.
    Z. Zhang, S.K. Vajpai, D. Orlov, and K. Ameyama: Mater. Sci. Eng. A, 2014, vol. 598, pp. 106-113.CrossRefGoogle Scholar
  40. 40.
    Z.A. Munir, U.A. Tamburini, and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763-777.CrossRefGoogle Scholar
  41. 41.
    M.A. Sutton, J.J. Orteu, and H. Schreier: Image Correlation for Shape, Motion and Deformation Measurements, Springer, NY, USA, 2009, pp. 1-321.Google Scholar
  42. 42.
    R. Yamanoglu, R.M. German, S. Karagoz, W.L. Bradbury, M. Zeren, W. Li, and E.A. Olevsky: Powder Metall., 2011, vol. 54, pp. 604-607.CrossRefGoogle Scholar
  43. 43.
    T.F. Broderick, A.G. Jackson, H. Jones, and F.H. Froes: Metall. Trans. A, 1985, vol. 16A, pp. 1951-1959.CrossRefGoogle Scholar
  44. 44.
    T. Grosdidier, D. Goran, G. Ji, and N. Llorca: J. Alloys Compd., 2010, vol. 504, pp. S456-S459.CrossRefGoogle Scholar
  45. 45.

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Sanjay Kumar Vajpai
    • 1
  • Mie Ota
    • 1
  • Tomoyuki Watanabe
    • 2
  • Ryo Maeda
    • 2
  • Tatsuya Sekiguchi
    • 2
    • 3
  • Takayuki Kusaka
    • 4
  • Kei Ameyama
    • 4
  1. 1.Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
  2. 2.Graduate SchoolRitsumeikan UniversityKusatsuJapan
  3. 3.IHI CorporationTokyoJapan
  4. 4.Department of Mechanical EngineeringRitsumeikan UniversityKusatsuJapan

Personalised recommendations