Metallurgical and Materials Transactions A

, Volume 46, Issue 2, pp 639–655 | Cite as

Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

  • Bikas C. Maji
  • Madangopal Krishnan
  • Amit Verma
  • R. Basu
  • I. Samajdar
  • Ranjit K. Ray


The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ε martensitic transformation, i.e., ε → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ε martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining “pinned” ε martensite is unpinned by the decomposition of deformation-induced α′ martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ε → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α′ martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α′ martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.


Martensite Martensitic Transformation Shape Memory Alloy Reverse Transformation Shape Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sato, E. Chisima, K. Soma and T. Mori, Acta Metall., 1982, vol. 30, pp 1177-1183.CrossRefGoogle Scholar
  2. 2.
    H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda and M. Murakami, ISIJ Int., 1990, vol. 30, pp 674-679.CrossRefGoogle Scholar
  3. 3.
    H. Inagaki, Z Metalkd., 1992, vol. 83, pp 90-96.Google Scholar
  4. 4.
    Sato, E. Chisima, Y. Yamaji and T. Mori, Acta Metall. 1984, vol. 32, pp 539-547.CrossRefGoogle Scholar
  5. 5.
    K. Tsuzaki, M. Ikegami, Y. Tomota, Y. Kurokawa, W. Nakagawara and T. Maki, Trans JIM, 1992, vol. 33, pp 263-270.CrossRefGoogle Scholar
  6. 6.
    M. M. Reyhani and P. G. McCormick, Scr. Metall. Mater., 1994, vol. 31, pp 875-878.CrossRefGoogle Scholar
  7. 7.
    H. Li and D. Dunne, ISIJ Int., 1997, vol. 37, pp 605-609.CrossRefGoogle Scholar
  8. 8.
    Z.Z. Dong, S. Kajiwara, T. Kikuchi and T. Sawaguchi, Acta Metall., 2005, vol. 53, pp 4009-4018.Google Scholar
  9. 9.
    M. Koyama, T. Sawaguchi and K. Tsuzaki, Mater. Sci. and Eng. A, 2011, vol. 528A, pp 2882-2288.CrossRefGoogle Scholar
  10. 10.
    H. Li, D.P. Dunne and N. Kennon, Mater. Sci. Eng. A, 1999, vol. 273A-275A, pp 517-523.CrossRefGoogle Scholar
  11. 11.
    B.C. Maji and M. Krishnan, Scripta Mater., 2003, vol. 48, pp 71-77.CrossRefGoogle Scholar
  12. 12.
    B.C. Maji, M. Krishnan, V. Hiwarkar, I. Samajdar and R. K. Ray, J. Mater. Eng. Perform., 2009, vol. 18, pp 588-593.CrossRefGoogle Scholar
  13. 13.
    H. Kubo, H. Otsuka, S. Farjami and T. Maruyama, Scripta Mater., 2006, vol. 55, pp 1059-1062.CrossRefGoogle Scholar
  14. 14.
    Sato, H. Kubo, T. Maruyama, Mater. Trans., 2006, vol. 47, pp 571- 579.CrossRefGoogle Scholar
  15. 15.
    W.Y. Jang, Q. Gu, J. Van Humbeeck and L. Delaey, Mater. Char., 1995, vol. 34, pp 67-72.CrossRefGoogle Scholar
  16. 16.
    E. Beraha and B. Shpigler, Colour Metallography, first edition, ASM International, Ohio, 1977.Google Scholar
  17. 17.
    J. H. Yang and C. M. Wayman, Metall. Trans. A, 1992, vol. 23A, pp 1445-1454.CrossRefGoogle Scholar
  18. 18.
    B.C. Maji, M. Krishnan, Gouthama and R.K. Ray, Metall. Mater. Trans A, 2011, vol. 42, pp 2154-2165.Google Scholar
  19. 19.
    B.C. Maji and M. Krishnan: in Proc. Int. Conf. Martensitic Transform, (ICOMAT-2008), G.B. Olson, D.S. Lieberman, and A. Saxena, eds., TMS, Santa Fe, New Mexico, 2009, pp. 349–357.Google Scholar
  20. 20.
    E. Stalmasek, WRC Bulletin, 1986, vol. 318, pp 23-98.Google Scholar
  21. 21.
    H.S. Yang and H.K.D.H. Bhadeshia, Mat. Sci. Technol., 2007, vol. 23, pp 556-560.CrossRefGoogle Scholar
  22. 22.
    A. Verma, M. Sundararaman, J.B. Singh and S.A. Nalawade, Meas. Sci. Technol, 2010, vol. 21, pp 105-106.CrossRefGoogle Scholar
  23. 23.
    Y. Hashino, S. Nakamura, N. Ishikawa, Y. Yamaji, S. Matsumoto, Y. Tanaka and A. Sato, Mater. Trans. JIM, 1992, vol. 33, pp 253-262.CrossRefGoogle Scholar
  24. 24.
    N.V. Caenegem, L. Duprez, K. Verbeken, B.C. DeCooman, Y. Houbaert and D. Segers, ISIJ Int., 2007, vol. 47, pp 723-732.CrossRefGoogle Scholar
  25. 25.
    L. Orgeas and D. Favier, Acta Mater., 1998, vol. 46, pp 5579-5591.CrossRefGoogle Scholar
  26. 26.
    Y. Liu, Z. Xie, J. Van Humbeeck and L. Delaey, Acta Mater., 1998, vol. 46, pp 4325-4338.CrossRefGoogle Scholar
  27. 27.
    F. Nishimura, N. Watanabe and K. Tanaka, Mat. Sci. Eng. A, 1996, vol. 221A, pp 134-142.CrossRefGoogle Scholar
  28. 28.
    N. Stanford and D. Dunne, Scripta Mater., 2005, vol. 53, pp 739-744.CrossRefGoogle Scholar
  29. 29.
    H. Sehitoglu, I. Karaman, X.Y. Zhang, Y. Chumlyakov and H.J. Maier, Scr. Metall., 2001, vol. 44, pp 779-784.CrossRefGoogle Scholar
  30. 30.
    J. H. Yang and C. M. Wayman, Acta Metall., 1992, vol. 40, pp 2011-2023.CrossRefGoogle Scholar
  31. 31.
    B.C. Maji, M. Krishnan and V.V. RamaRao, Metall. Mater. Trans A, 2003, vol. 34A, pp 1029-1042.CrossRefGoogle Scholar
  32. 32.
    P. Duhaj, J. Ivan and E. Makovicky, J. Iron and Steel Inst., 1968, vol. 206, pp 1245-1252.Google Scholar
  33. 33.
    M.E. Wilms, V.J. Gadgil, J.M. Krougman and F.P. Ijsseling, Corr. Sci., 1994, vol. 36, pp 871-881.CrossRefGoogle Scholar
  34. 34.
    F. Abe, H. Arki and T. Noda, Mater. Sci. Technol., 1988, vol. 4, pp 885-893.CrossRefGoogle Scholar
  35. 35.
    R.J. Gray, V.K. Sikka and R.T. King, J. Metals, 1978, vol. 30, pp 18-26.Google Scholar
  36. 36.
    F.B. Waanders, S.W. Vorster and H. Pollak, Hyperfin Inter., 1999, vol. 120-121, pp 751-755.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Bikas C. Maji
    • 1
  • Madangopal Krishnan
    • 1
  • Amit Verma
    • 2
  • R. Basu
    • 3
  • I. Samajdar
    • 3
  • Ranjit K. Ray
    • 4
  1. 1.Glass & Advanced Materials DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Mechanical Metallurgy DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of Metallurgical Engineering & Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  4. 4.R & D Division, Tata SteelJamshedpurIndia

Personalised recommendations