Metallurgical and Materials Transactions A

, Volume 46, Issue 1, pp 407–425 | Cite as

The Effect of Simulated Thermomechanical Processing on the Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Linepipe Steel

  • P. Cizek
  • B. P. Wynne
  • C. H. J. Davies
  • P. D. Hodgson
Article

Abstract

The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed “acicular ferrite”) produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.

Notes

Acknowledgments

Financial support provided by the Australian Research Council is gratefully acknowledged.

References

  1. 1.
    T. Araki: Proc. Int. Conf. HSLA Steels’85, J.M. Gray et al., eds., ASM International, Metals Park, OH, 1986, pp. 259–71.Google Scholar
  2. 2.
    B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.CrossRefGoogle Scholar
  3. 3.
    T. Araki, I. Kozasu, H. Takechi, K. Shibata, M. Enomoto, and H. Tamehiro, eds.: Atlas for Bainitic MicrostructuresVol. 1, Continuous-Cooled Zw Microstructures of Low-Carbon Steels, Iron and Steel Institute of Japan, Tokyo, 1992, pp. 4–5.Google Scholar
  4. 4.
    S.C. Wang and J.R. Yang: Mater. Sci. Eng. A, 1992, vol. 154, pp. 43-49.CrossRefGoogle Scholar
  5. 5.
    K. Fujiwara, S. Okaguchi, and H. Ohtani: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1006–12.CrossRefGoogle Scholar
  6. 6.
    G. Krauss and S.W. Thompson: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.CrossRefGoogle Scholar
  7. 7.
    G.I. Garcia: Proc. Int. Conf. Microalloying’95, The Iron and Steel Society, Warrendale, PA, 1995, pp. 365–75.Google Scholar
  8. 8.
    S. Yamamoto, H. Yokoyama, K. Yamada, and M. Niikura: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1020–26.CrossRefGoogle Scholar
  9. 9.
    S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–71.CrossRefGoogle Scholar
  10. 10.
    P.A. Manohar, T. Chandra, and C.R. Killmore: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1486–93.CrossRefGoogle Scholar
  11. 11.
    C.S. Chiou, J.R. Yang, and C.Y. Huang: Mater. Chem. Phys., 2001, vol. 69, pp. 113–24.CrossRefGoogle Scholar
  12. 12.
    P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1331–49.CrossRefGoogle Scholar
  13. 13.
    Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 1571–77.CrossRefGoogle Scholar
  14. 14.
    M. Díaz-Fuentes, A. Iza-Mendia, and I. Gutiérrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505–16.CrossRefGoogle Scholar
  15. 15.
    M.C. Zhao, K. Yang, F.R. Xiao, and Y.Y. Shan: Mater. Sci. Eng. A, 2003, vol. 355, pp. 126–36.CrossRefGoogle Scholar
  16. 16.
    F. Xiao, B. Liao, D. Ren, Y. Shan, and K. Yang: Mater. Charact., 2005, vol. 54, pp. 305–14.CrossRefGoogle Scholar
  17. 17.
    I.A. Yakubtsov, P. Poruks, and J.D. Boyd: Mater. Sci. Eng. A, 2008, vol. 480, pp. 109–16.CrossRefGoogle Scholar
  18. 18.
    S.Y. Shin, B. Hwang, S. Lee, N.J. Kim, and S.S. Ahn: Mater. Sci. Eng. A, 2007, vol. 458, pp. 281–89.CrossRefGoogle Scholar
  19. 19.
    Y.M. Kim, H. Lee, and N.J. Kim: Mater. Sci. Eng. A, 2008, vol. 478, pp. 61–70.Google Scholar
  20. 20.
    S.Y. Han, S.Y. Shin, C.-H. Seo, H. Lee, J.-H. Bae, K. Kim, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1851–62.CrossRefGoogle Scholar
  21. 21.
    B. Hwang, C.G. Lee, and T.-H. Lee: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 85–96.CrossRefGoogle Scholar
  22. 22.
    S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.-H. Bae, and K. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 329–40.CrossRefGoogle Scholar
  23. 23.
    R.Y. Zhang and J.D. Boyd: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1448-59.CrossRefGoogle Scholar
  24. 24.
    M. Olasolo, P. Uranga, J.M. Rodriguez-Ibabe, and B. López: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2559–69.CrossRefGoogle Scholar
  25. 25.
    H.K. Sung, S.Y. Shin, B. Hwang, C.G. Lee, N.J. Kim, and S. Lee: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1827–35.CrossRefGoogle Scholar
  26. 26.
    H.K. Sung, S.Y. Shin, B. Hwang, C.G. Lee, and S. Lee: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 294–302.CrossRefGoogle Scholar
  27. 27.
    H.F. Lan, L.X. Du, and X.H. Liu: Steel Res. Int., 2013, vol. 84, pp. 352–61.CrossRefGoogle Scholar
  28. 28.
    N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3552–63.CrossRefGoogle Scholar
  29. 29.
    I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth and Company, London, 1988.Google Scholar
  30. 30.
    Y. Ohmori and T. Maki, Mater. Trans. JIM, 1991, vol. 32, pp. 631–41.CrossRefGoogle Scholar
  31. 31.
    A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, eds.: Electron Backscatter Diffraction in Materials Science, 2nd edition, Springer, New York, 2009.Google Scholar
  32. 32.
    F.J. Humphreys, P.S. Bate, and P.J. Hurley: J. Microsc., 2001, vol. 201, pp. 50–58.CrossRefGoogle Scholar
  33. 33.
    J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229–40.CrossRefGoogle Scholar
  34. 34.
    A.-F. Gourgues, H.M. Flower, and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26–40.CrossRefGoogle Scholar
  35. 35.
    J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: in Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 82–125.Google Scholar
  36. 36.
    M. Enomoto, C.L. White, and H.I. Aaronson: Metall. Trans. A, 1988, vol. 19A, pp. 1807–18.CrossRefGoogle Scholar
  37. 37.
    G.R. Speich, L.J. Cuddy, C.R. Gordon, and A.J. DeArdo: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1983, pp. 341–89.Google Scholar
  38. 38.
    Q. Zhu, C.M. Sellars, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 757–66.CrossRefGoogle Scholar
  39. 39.
    C.W. Choi, H.J. Koh, and S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2669–74.CrossRefGoogle Scholar
  40. 40.
    E.A. Wilson: Met. Sci., 1984, vol. 18, pp. 471–84.CrossRefGoogle Scholar
  41. 41.
    E.A. Wilson: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 615–30.CrossRefGoogle Scholar
  42. 42.
    P. Cizek, F. Bai, W.M. Rainforth, and J.H. Beynon: Mater. Trans. 2004, vol. 45, pp. 2157–64.CrossRefGoogle Scholar
  43. 43.
    H. Inagaki: Trans. Iron Steel Inst. Jpn., 1983 vol. 23, pp. 1059–67.CrossRefGoogle Scholar
  44. 44.
    P. Cizek, J.A. Whiteman, W.M. Rainforth, and J.H. Beynon: J. Microsc., 2004, vol. 213, pp. 285–95.CrossRefGoogle Scholar
  45. 45.
    A.S. Taylor, P. Cizek, and P.D. Hodgson: Acta Mater., 2012, vol. 60, 1548–69.CrossRefGoogle Scholar
  46. 46.
    W.T. Reynolds, Jr., H.I. Aaronson, and G. Spanos: Mater. Trans. JIM, 1991, vol. 32, pp. 737–46.CrossRefGoogle Scholar
  47. 47.
    H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21A, pp. 767–97.CrossRefGoogle Scholar
  48. 48.
    S. Okaguchi, H. Ohtani, and Y. Ohmori, Mater. Trans. JIM, 1991, vol. 32, pp. 697–704.CrossRefGoogle Scholar
  49. 49.
    H.K.D.H. Bhadeshia: Bainite in SteelsTransformations, Microstructure and Properties, 2nd edition, IOM Communications Ltd., London, 2001.Google Scholar
  50. 50.
    A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337–48.CrossRefGoogle Scholar
  51. 51.
    T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 431, pp. 228–36.CrossRefGoogle Scholar
  52. 52.
    V. Pancholi, M. Krishnan, I.S. Samajdar, V. Yadav, and N.B. Ballal: Acta Mater., 2008, vol. 56, pp. 2037–50.CrossRefGoogle Scholar
  53. 53.
    N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.CrossRefGoogle Scholar
  54. 54.
    C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 1238–43.CrossRefGoogle Scholar
  55. 55.
    Y. Ohmori, H. Ohtani, and T. Kunitake: Met. Sci., 1974, vol. 8, pp. 357–66.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • P. Cizek
    • 1
  • B. P. Wynne
    • 2
  • C. H. J. Davies
    • 3
  • P. D. Hodgson
    • 1
  1. 1.Institute for Frontier MaterialsDeakin UniversityWaurn PondsAustralia
  2. 2.Department of Materials Science and EngineeringThe University of SheffieldSheffieldUK
  3. 3.Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonAustralia

Personalised recommendations