Metallurgical and Materials Transactions A

, Volume 46, Issue 1, pp 123–133 | Cite as

Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels

  • Henrique Duarte AlvarengaEmail author
  • Tom Van De Putte
  • Nele Van Steenberge
  • Jilt Sietsma
  • Herman Terryn


Decarburization is an important process during the heat treatment of steels. It can be divided into three separated events: dissolution of carbides, diffusion of carbon through the iron matrix, and surface reactions. The process is very sensitive to temperature. During intercritical annealing, austenite nucleates in the cementite-ferrite interface and grows at the rate determined by the diffusion of carbon in austenite. The presence of a decarburizing atmosphere during annealing guides the carbon diffusion in ferrite toward the surface, generating a flux of carbon from austenite toward ferrite, disturbing the austenite growth. In the presence of pearlite, the ferrite-austenite interface can be assumed to remain static until pearlite is completely dissolved, reducing then the carbon flux in austenite, consequently diminishing the austenite formation rate. At intercritical temperatures, the cementite-free ferrite layer at the surface reaches a greater width due to the combination of the thermodynamic fraction of austenite, dissolution rate of cementite, and the diffusivity of carbon in austenite and ferrite. In this study, an experimental investigation of the effects of the carbide morphology and distribution and the \(\alpha -\gamma \) phase transformation in the decarburization kinetics on hypo-eutectoid steels is presented. It is suggested that the change of the dissolution kinetics of the carbides due to its morphology will affect the austenitization kinetics. Thus, the distribution of the carbon in the microstructure may determine the rate of decarburization in combination with the carbon diffusion through the phases or the gas-metal reactions.


Ferrite Austenite Cementite Pearlite Decarburization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Grabke, Metall. Trans. B 1B, 2972–75 (1970)Google Scholar
  2. 2.
    H. Grabke, G. Tauber, Arch. Eisenhuttenwes. 46, 215–22 (1975)Google Scholar
  3. 3.
    D. Li, D. Anghelina, D. Burzic, J. Zamberger, R. Kienreich, H. Schifferl, W. Krieger, E. Kozeschnik, Steel Res. Int. 80, 298–303 (2009)Google Scholar
  4. 4.
    N. Birks, W. Jackson, J. Iron Steel Inst. 208, 81–85 (1970)Google Scholar
  5. 5.
    C. Oldani, Scripta Mater. 35, 1247–1371 (1996)CrossRefGoogle Scholar
  6. 6.
    R. PremKumar, I. Samajdar, N. Viswanathan, V. Singal, V. Seshadri, J. Magn. Magn. Mater. 264, 75–85 (2003)CrossRefGoogle Scholar
  7. 7.
    K. Marra, E. Alvarenga, V. Buono, ISIJ Int. 44, 618–22 (2004)CrossRefGoogle Scholar
  8. 8.
    Y. Kim, H. Leckie, Metall. Trans. B 6, 303–10 (1975)CrossRefGoogle Scholar
  9. 9.
    H. Grabke, Arch. Eisenhuttenwes. 46, 75–81 (1975)Google Scholar
  10. 10.
    B. Korousic, B. Stupnisek, Kovine Zlitine Tehnol. (Slovenia) 30, 521–26 (1996)Google Scholar
  11. 11.
    B. Soenen, S. Jacobs, M. De Wulf, Steel Res. Int. 76, 425–28 (2005)Google Scholar
  12. 12.
    R. Baggerly, R. Drollinger, J. Mater. Eng. Perform. 2, 47–50 (1993)CrossRefGoogle Scholar
  13. 13.
    A. Phillion, H. Zurob, C. Hutchinson, H. Guo, D. Malakhov, J. Nakano, G. Purdy, Metall. Mater. Trans. A 35A, 1237–42 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Gegner: The Fourth International Conference on Mathematical Modeling and Computer Simulation of Materials Technologies, 2006.Google Scholar
  15. 15.
    S. Choi, S.V.D. Zwaag, ISIJ Int. 52, 549–58 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Verhoeven, Mater. Charact. 25, 221–39 (1990)CrossRefGoogle Scholar
  17. 17.
    M.A. Borodin, J. Math. Sci. 178, 13–40 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Mercier, X. Decoopman, D. Chicot, Surf. Coat. Technol. 202, 3419–26 (2008)CrossRefGoogle Scholar
  19. 19.
    O. Perevertov, O. Stupakov, I. Tomáš, B. Skrbek, NDT & E Int. 44, 490–94 (2011)CrossRefGoogle Scholar
  20. 20.
    B. Sundman, B. Jansson, J. Andersson, Calphad 9, 153–90 (1985)CrossRefGoogle Scholar
  21. 21.
    J. Zhao, C. Mesplont, B. De Cooman, Mater. Sci. Eng. A 332, 110–16 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Bengtson, Spectrochim. Acta Part B At. Spectrosc. 40, 631–39 (1985)CrossRefGoogle Scholar
  23. 23.
    T. Nelis, M. Aeberhard, R. Payling, J. Michler, P. Chapon, J. Anal. At. Spectrom. 19, 1354–60 (2004)CrossRefGoogle Scholar
  24. 24.
    A. Bengtson, Spectrochim. Acta Part B At. Spectrosc. 49, 411–29 (1994)CrossRefGoogle Scholar
  25. 25.
    R. Payling, D.G. Jones, S.A. Gower, Surf. Interface Anal. 23, 1–11 (1995)CrossRefGoogle Scholar
  26. 26.
    B. Panigrahi, Bull. Mater. Sci. 24, 361–71 (2001)CrossRefGoogle Scholar
  27. 27.
    A. Van Cauter, J. Dilewijns, F. Hörzenberger, R. Hubert, B. De Cooman, J. Mater. Eng. Perform. 9, 131–37 (2000)CrossRefGoogle Scholar
  28. 28.
    A. Pandit, H. Bhadeshia, Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 2767–78 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Verhoeven, E. Gibson, Metall. Mater. Trans. A 29A, 1181–89 (1998)CrossRefGoogle Scholar
  30. 30.
    G. Speich, V. Demarest, R. Miller, Metall. Trans. A 12A, 1419–28 (1981)CrossRefGoogle Scholar
  31. 31.
    C. Garcia, A. DeArdo, Metall. Trans. A 12, 521–30 (1981)CrossRefGoogle Scholar
  32. 32.
    D. Shtansky, K. Nakai, Y. Ohmori, Acta Mater. 47, 2619–32 (1999)CrossRefGoogle Scholar
  33. 33.
    D. Gaude-Fugarolas, H. Bhadeshia, J. Mater. Sci. 38, 1195–1201 (2003)CrossRefGoogle Scholar
  34. 34.
    I. Calliari, M. Dabalà, E. Ramous, M. Zanesco, E. Gianotti, J. Mater. Eng. Perform. 15, 693–98 (2006)CrossRefGoogle Scholar
  35. 35.
    C.-L. Zhang, Y.-Z. Liu, L.-Y. Zhou, C. Jiang, J.-F. Xiao, Int. J. Miner. Metall. Mater. 19, 116–21 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Snoek, Physica 8, 734–44 (1941)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Henrique Duarte Alvarenga
    • 1
    • 4
    Email author
  • Tom Van De Putte
    • 2
  • Nele Van Steenberge
    • 2
  • Jilt Sietsma
    • 3
    • 4
  • Herman Terryn
    • 1
    • 5
  1. 1.Research Group Electrochemical and Surface Engineering SURFVrije Universiteit BrusselBrusselsBelgium
  2. 2.ArcelorMittal Global R & D Gent - OCASZelzateBelgium
  3. 3.Department of Materials Science and EngineeringDelft University of Technology DelftThe Netherlands
  4. 4.Department of Metallurgy and Materials ScienceUniversiteit Gent UniversityGhentBelgium
  5. 5.Department of Materials Science and EngineeringDelft University of Technology DelftThe Netherlands

Personalised recommendations