Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 13, pp 6260–6270 | Cite as

An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel

  • Amanda S. WuEmail author
  • Donald W. Brown
  • Mukul Kumar
  • Gilbert F. Gallegos
  • Wayne E. King
Article

Abstract

Additive manufacturing (AM) technology provides unique opportunities for producing net-shape geometries at the macroscale through microscale processing. This level of control presents inherent trade-offs necessitating the establishment of quality controls aimed at minimizing undesirable properties, such as porosity and residual stresses. Here, we perform a parametric study into the effects of laser scanning pattern, power, speed, and build direction in powder bed fusion AM on residual stress. In an effort to better understand the factors influencing macroscale residual stresses, a destructive surface residual stress measurement technique (digital image correlation in conjunction with build plate removal and sectioning) has been coupled with a nondestructive volumetric evaluation method (i.e., neutron diffraction). Good agreement between the two measurement techniques is observed. Furthermore, a reduction in residual stress is obtained by decreasing scan island size, increasing island to wall rotation to 45 deg, and increasing applied energy per unit length (laser power/speed). Neutron diffraction measurements reveal that, while in-plane residual stresses are affected by scan island rotation, axial residual stresses are unchanged. We attribute this in-plane behavior to misalignment between the greatest thermal stresses (scan direction) and largest part dimension.

Keywords

Residual Stress Digital Image Correlation Additive Manufacturing Tensile Residual Stress Residual Stress Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-SI-002 and has been assigned the document release ID #LLNL-JRNL-654740.

The authors would like to acknowledge the guidance and expertise of Ms. Mary M. LeBlanc (LLNL) in mechanical characterization techniques and digital image correlation methodology. Dr. Bjørn Clausen and Dr. Thomas A. Sisneros (LANL, Lujan Center) are recognized for their time and expertise in neutron diffraction. The authors also recognize Dr. Bassem el-Dasher, Dr. Robert Ferencz, and Dr. Neil Hodge (LLNL) for their guidance in planning these experiments—and, in particular, Dr. Neil Hodge for melt pool geometry predictive capabilities, as well as Dr. Chandrika Kamath (LLNL) for process optimization expertise and Dr. John Elmer (LLNL) for his advice and expertise. Mr. Gregory J. Larsen and Mr. Paul Alexander are recognized for their drafting efforts and processing expertise, respectively. Dr. Karl Fisher provided the RUS measurements of elastic modulus used in this study.

References

  1. 1.
    I. Gibson, D.W. Rosen, B. Stucker: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, Springer, New York, NY, 2010.CrossRefGoogle Scholar
  2. 2.
    S.H. Huang, P. Liu, A. Mokasdar, L. Hou: International Journal of Advanced Manufacturing Technology, 2013, vol. 67, pp. 1191-1203.CrossRefGoogle Scholar
  3. 3.
    D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe: International Materials Reviews, 2012, vol 57, pp. 133-164.CrossRefGoogle Scholar
  4. 4.
    R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, J. Stampfl: Advanced Engineering Materials, 2012, vol. 14, pp. 1052-1058.CrossRefGoogle Scholar
  5. 5.
    N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil: Advanced Engineering Materials, 2014, DOI:  10.1002/adem.201400097.Google Scholar
  6. 6.
    P. Mercelis and J.-P. Kruth: Rapid Prototyping Journal,2006, vol. 12, pp. 254-265.CrossRefGoogle Scholar
  7. 7.
    C.R. Knowles, T.H. Becker, R.B. Tait: South African Journal of Industrial Engineering, 2012, vol. 23, pp. 119-129.Google Scholar
  8. 8.
    M.F. Zaeh, G. Branner: Prod. Eng. Res. Devel., 2010, vol. 4, pp. 35-45.CrossRefGoogle Scholar
  9. 9.
    J.P. Kruth, J. Deckers, E. Yasa, R. Wauthlé: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, vol. 226, pp. 980-991.CrossRefGoogle Scholar
  10. 10.
    E. Yasa: Dissertation, Katholieke Universiteit Leuven, Belgium, 2011.Google Scholar
  11. 11.
    N.W. Klingbeil, J.L. Beuth, R.K. Chin, C.H. Amon: International Journal of Mechanical Sciences, 2002, vol. 44, pp. 57-77.CrossRefGoogle Scholar
  12. 12.
    P. Aggarangsi and J.L. Beuth: Proc. Annu. Int. Solid Freeform Fabr. Sympos., Austin, Texas, 2006, pp. 709–20.Google Scholar
  13. 13.
    A. Vasinota, J.L. Beuth, M.L. Griffith: ASME Journal of Manufacturing Science and Engineering, 2007, vol. 129, pp. 101-109.CrossRefGoogle Scholar
  14. 14.
    M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, F. Abe: CIRP Annals - Manufacturing Technology, 2004, vol. 53, pp. 195-198.CrossRefGoogle Scholar
  15. 15.
    V. Hauk: Structural and residual stress analysis by nondestructive methods, Elsevier Science B.V. Amsterdam, The Netherlands, 1997.Google Scholar
  16. 16.
    P.J. Withers, H.K.D.H. Bhadeshia: Materials Science and Technology, 2001, vol. 17, pp. 355-365.CrossRefGoogle Scholar
  17. 17.
    I.C. Noyan, T.C. Huang, B.R. York: Critical Reviews in Solid State and Materials Sciences, 1995, vol. 20, pp. 125-177.CrossRefGoogle Scholar
  18. 18.
    D.W. Brown, T.M. Holden, B. Clausen, M.B. Prime, T.A. Sisneros, H. Swensen, J. Vaja: Acta Materialia, 2011, vol. 59, pp. 864-873.CrossRefGoogle Scholar
  19. 19.
    M.E. Fitzpatrick, A. Lodini: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. Taylor & Francis, London, 2003.Google Scholar
  20. 20.
    D.I. Crecraft: Journal of Sound and Vibration, 1967, vol. 5, pp. 173-192.CrossRefGoogle Scholar
  21. 21.
    D.D.L. Chung: Thermochemica Acta, 2000, vol. 364, pp. 121-132.CrossRefGoogle Scholar
  22. 22.
    E.S. Gorkunov, S.M. Zadvorkin, and L.S. Goruleva: 18th World Conference for Nondestructive Testing, Durban, South Africa, 16–20 April, 2012.Google Scholar
  23. 23.
    V. Sergo, G. Pezzotti, O. Sbaizero, T. Nishida: Acta Materialia, 1998, vol. 46, pp.1701-10.CrossRefGoogle Scholar
  24. 24.
    J.W. Ager III, M.D. Drory: Physical Review B, 1993, vol. 48, pp. 2601-2607.CrossRefGoogle Scholar
  25. 25.
    K. Kusaka, T. Hanabusa, M. Nishida, F. Inoko: Thin Solid Films, 1996, vol. 290–291, pp. 248-253.CrossRefGoogle Scholar
  26. 26.
    T. Kannengiesser, A. Kromm, M. Rethmeier, J. Gibmeier, C. Genzel: Advances in X-ray Analysis, 2009, vol. 52, pp. 755-762.Google Scholar
  27. 27.
    Y. Watanabe, M. Nishida, T. Hanabusa: Advances in X-ray Analysis, 2009, vol. 52, pp. 271-278.Google Scholar
  28. 28.
    ASTM Standard E837 REV A: Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, ASTM International, West Conshohocken, PA, 2013.Google Scholar
  29. 29.
    M.B. Prime: Journal of Engineering Materials and Technology, 2000, vol. 123, pp. 162-168.CrossRefGoogle Scholar
  30. 30.
    M.B. Prime: Applied Mechanics Reviews, 1999, vol. 52, pp. 75-96.CrossRefGoogle Scholar
  31. 31.
    D.V. Nelson, A. Makino, T. Schmidt: Experimental Mechanics, 2006, vol. 46, pp. 31-38.CrossRefGoogle Scholar
  32. 32.
    J.D. Lord, D. Penn, P. Whitehead: Applied Mechanics and Materials, 2008, vol. 13-14, pp. 65-73.CrossRefGoogle Scholar
  33. 33.
    J. Gao, H. Shang: Applied Optics, 2009, vol. 48, pp. 1371-1381.CrossRefGoogle Scholar
  34. 34.
    A. Baldi: Experimental Mechanics, 2013, doi:  10.1007/s11340-013-9814-6.Google Scholar
  35. 35.
    J. Zhu, H. Xie, Z. Hu, P. Chen, Q. Zhang: Surface & Coatings Technology, 2011, vol. 206, pp. 1396-1402.CrossRefGoogle Scholar
  36. 36.
    N. Daynes, G. Horne, P.J. Heard, D.Z.L. Hodgson, A. Shterenlikht: Advances in X-ray Analysis, 2009, vol. 52: pp. 651-658.Google Scholar
  37. 37.
    A. M. Korsunsky, M. Sebastiani, E. Bemporad: Surface & Coatings Technology, 2010, vol. 205, pp. 2393-2403.CrossRefGoogle Scholar
  38. 38.
    Y.S. Yang, J.G. Bae, C.G. Park: Journal of Physics: Conference Series, 2008, vol. 100, pp. 012018.CrossRefGoogle Scholar
  39. 39.
    L. Bingleman and G.S. Schaker: Proceedings of the SEM Annual Conference, June 7-10, 2010, Indianapolis, USA.Google Scholar
  40. 40.
    J. Zhang: Optical Engineering, 1998, vol. 37, pp. 2402-2409.CrossRefGoogle Scholar
  41. 41.
    O. Sedivy, C. Krempaszky, and S. Holy: Aust. Congr. Appl. Mech., Brisbane, Australia, December 10–12, 2007.Google Scholar
  42. 42.
    J. Zhang, W.C. Fok, and T.C. Chong: Proc. SPIE 2921, Int. Conf. Exp. Mech. Adv. Appl., 1997, pp. 584–91.Google Scholar
  43. 43.
    S. Suresh, A.E. Giannakopoulos: Acta Materialia, 1998, vol. 46, pp. 5575-5567.CrossRefGoogle Scholar
  44. 44.
    B. Vrancken, R. Wauthlé, J.-P. Kruth, and J. Van Humbeeck: Proc. Solid Freeform Fabr. Sympos., Austin, Texas, Aug. 12-14, 2013, pp. 393–407.Google Scholar
  45. 45.
    C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, R. Lee, and A. Sisto: Int. J. Adv. Manuf. Technol., 2014, vol. 74, pp. 65–78.Google Scholar
  46. 46.
    L. Thijs, M.L. Montero Sistiaga, R. Wauthle, Q.G. Xie, J.-P. Kruth, J. V. Humbeeck: Acta Materialia, 2013, vol. 61, pp. 4657-4668.CrossRefGoogle Scholar
  47. 47.
    T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze: Metallurgical and Materials Transactions B, 2013, vol. 44B, pp. 794-796.CrossRefGoogle Scholar
  48. 48.
    J.A. Choren, S.M. Heinrich, M.B. Silver-Thorn: Journal of Materials Science, 2013, vol. 48, pp. 5103-5112.CrossRefGoogle Scholar
  49. 49.
    H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker: Twenty Forth Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, August 12–14, 2013.Google Scholar
  50. 50.
    D.B. Hann, J. Iammi, J. Folkes: J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 445401.CrossRefGoogle Scholar
  51. 51.
    T.W. Eagar, N.S. Tsai: Welding Journal, 1983, vol. 62, pp. S346-S355.Google Scholar
  52. 52.
    R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy: J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 5733-5766.CrossRefGoogle Scholar
  53. 53.
    P. Bleys, J.-P. Kruth, B. Lauwers, B. Schacht, V. Balasubramanian, L. Froyen, J.V. Humbeek: Advanced Engineering Materials, 2006, vol. 8, pp. 15-25.CrossRefGoogle Scholar
  54. 54.
    L. Wang, S.D. Felicelli, P. Pratt: Materials Science and Engineering A, 2008, vol. 496, pp. 234-241.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International (outside the USA) 2014

Authors and Affiliations

  • Amanda S. Wu
    • 1
    Email author
  • Donald W. Brown
    • 2
  • Mukul Kumar
    • 1
  • Gilbert F. Gallegos
    • 1
  • Wayne E. King
    • 3
  1. 1.Materials Engineering DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Materials Science & Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Condensed Matter and Materials Division, Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations