Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 13, pp 6008–6015 | Cite as

Local and Global Stress–Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method

  • Hyeok Jae Jeong
  • Nam Suk Lim
  • Bong Ho Lee
  • Chan Gyung Park
  • Sunghak Lee
  • Seong-Hoon Kang
  • Ho Won Lee
  • Hyoung Seop Kim
Article

Abstract

Transformation-induced plasticity (TRIP) steels have excellent strain hardening exponents and resistibility against tensile necking using the strain-induced martensite formation that occurs as a result of the plastic deformation and strain on the retained austenite phase. Detailed studies on the microstructures and local mechanical properties, as well as global mechanical properties, are necessary in order to thoroughly understand the properties of TRIP steels with multiple phases of ferrite, bainite, retained austenite, and martensite. However, methods for investigating the local properties of the various phases of the TRIP steel are limited due to the very complicated and fine microstructures present in TRIP steel. In this study, the experimental and numerical methods, i.e., the experimental nanoindenting results and the theoretical finite element analyses, were combined in order to extract the local stress–strain curves of each phase. The local stress–strain curves were in good agreement with the values presented in the literature. In particular, the global plastic stress–strain behavior of the TRIP steel was predicted using the multiple phase unit cell finite element analysis, and this demonstrated the validity of the obtained properties of each local phase. The method of extracting the local stress–strain curves from the nanoindenting curves and predicting the global stress–strain behavior assists in clarifying the smart design of multi-phase steels.

Keywords

Ferrite Austenite Martensite Strain Curve Bainite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Basic Research Program of the Korea Institute of Materials Science.

References

  1. 1.
    S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765-78.CrossRefGoogle Scholar
  2. 2.
    G. Reisner, E.A. Werner, and F.D. Fischer: Int. J. Solids Struct., 1998, vol. 35, pp. 2457-73.CrossRefGoogle Scholar
  3. 3.
    E. De Moor, D.K. Matlock, J.G. Speera, and M.J. Merwin: Scripta Mater., 2011, vol. 64, pp. 185-88.CrossRefGoogle Scholar
  4. 4.
    R.L. Miller: Metall. Trans. A, 1972, vol. 3, pp. 905-12.CrossRefGoogle Scholar
  5. 5.
    J.I. Kim and J.W. Morris: Metall. Trans. A, 1981, vol. 12, pp. 1957-63.CrossRefGoogle Scholar
  6. 6.
    M. De Meyer, D. Vanderschueren, and B.C. De Cooman: ISIJ Inter., 1999, vol. 39, pp. 813-22.CrossRefGoogle Scholar
  7. 7.
    W.C. Jeong, D.K. Matlock, and G. Krauss: Mater. Sci. Eng. A, 1993, vol. 165, pp. 1-8.CrossRefGoogle Scholar
  8. 8.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564-80.CrossRefGoogle Scholar
  9. 9.
    H. Bei, Z.P. Lu, S. Shim, G. Chen, and E.P. George: Metall. Mater. Trans. A, 2010, vol. 58, pp. 1735-42.CrossRefGoogle Scholar
  10. 10.
    C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N.Gibson, W. Gissler, H. Hruby, J. Musil, and J. Vlček: Surf. Coat. Technol., 1999, vol. 120-121, pp. 405-11.CrossRefGoogle Scholar
  11. 11.
    K. Durst, B. Backes, and M. Göken: Scripta Mater., 2005, vol. 52, pp. 1093-97.CrossRefGoogle Scholar
  12. 12.
    M. Göken and M. Kempf: Acta Mater., 1999, vol. 47, pp. 1043-52.CrossRefGoogle Scholar
  13. 13.
    J.-Y. Rho, T.Y. Tsui, and G.M. Pharr: Biomaterials, 1997, vol. 18, pp. 1325-30.CrossRefGoogle Scholar
  14. 14.
    S. Bec, A. Tonck, and J.L. Loubet: Philos. Mag., 2006, vol. 86, pp. 5347-58.CrossRefGoogle Scholar
  15. 15.
    A.C. Fischer-Cripps: Mater. Sci. Eng. A, 2004, vol. 385, pp. 74-82.CrossRefGoogle Scholar
  16. 16.
    Z.B. Wang, N.R.Tao, S.Li, W. Wang, G. Liu, J. Lu, and K. Lu: Mater. Sci. Eng. A, 2003, vol. 352, pp. 144-49.CrossRefGoogle Scholar
  17. 17.
    O. Kraft, R. Schwaiger, and P. Wellner: Mater. Sci. Eng. A, 2001, vol. 319-321, pp. 919-23.CrossRefGoogle Scholar
  18. 18.
    T. Chudoba and F. Richter: Surf. Coat. Technol., 2001, vol. 148, pp 191-98.CrossRefGoogle Scholar
  19. 19.
    D. Tabor: The hardness of metals, Oxford: Oxford University Press, 1951, pp. 100-126.Google Scholar
  20. 20.
    Y. Ma, Y. Zhang, H-F. Yu, X-Y. Zhang, X-F. Shu, and B. Tang: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2368-2373.CrossRefGoogle Scholar
  21. 21.
    J-C. Kuo and I-H. Huang, Mater. Trans., 2010, vol. 51, pp. 2104-2108.CrossRefGoogle Scholar
  22. 22.
    S. Pathak, S.R. Kalidindi, C. Klemenz, and N. Orlovskaya, J. Euro. Ceram. Soc., 2008, vol. 28, pp. 2213-2220.CrossRefGoogle Scholar
  23. 23.
    K.D. Bouzakis, N. Michailidis, and G. Erkens: Surf. Coat. Technol., 2001, vol. 142-144, pp. 102-09.CrossRefGoogle Scholar
  24. 24.
    ABAQUS/Standard, ABAQUS, Inc., Providence, RI, 2009.Google Scholar
  25. 25.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3-20.CrossRefGoogle Scholar
  26. 26.
    Y.-T. Cheng and C.-M. Cheng: Appl. Phys. Lett., 1998, vol. 73, pp. 614-16.CrossRefGoogle Scholar
  27. 27.
    Y.-T. Cheng and C.-M. Cheng: J. Appl. Phys., 1998, vol. 84, pp. 1284-91.CrossRefGoogle Scholar
  28. 28.
    Y. Wang, D. Raabe, C. Kluber, and F. Roters: Acta Mater., 2004, vol. 52, 2229-2238.CrossRefGoogle Scholar
  29. 29.
    H.S. Kim: Mater. Sci. Eng. A, 2000, vol. 289, pp. 30-33.CrossRefGoogle Scholar
  30. 30.
    H.S. Kim, S.I. Hong, and S.J Kim: J. Mater. Proc. Technol., 2001, vol. 112, pp. 109–13.Google Scholar
  31. 31.
    Y.-L. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1994, vol. 42, pp. 77-97.CrossRefGoogle Scholar
  32. 32.
    J. Segurado, C. González, and J. LLorca: Acta Mater., 2003, vol. 51, pp. 2355–69.Google Scholar
  33. 33.
    D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner: Phys. Rev. B, 2003, vol. 67, pp. 1721011-14.CrossRefGoogle Scholar
  34. 34.
    T.-H. Ahn, C.-S. Oh, D.H. Kim, K.H. Oh, H. Bei, E.P. George, and H.N. Han: Scripta Mater., 2010, vol. 63, pp. 540-43.CrossRefGoogle Scholar
  35. 35.
    R.G. Davies: Metall. Trans. A, 1978, vol. 9, pp. 451-55.CrossRefGoogle Scholar
  36. 36.
    M.-C. Zhao, F. Yin, T. Hanamura, K. Nagai, and A. Atrens: Scripta Mater., 2007, vol. 57, pp. 857-60.CrossRefGoogle Scholar
  37. 37.
    W.J. Dan, S.H. Li, W.G. Zhang, and Z.Q. Lin: Mater. Des., 2008, vol. 29, pp. 604-12.CrossRefGoogle Scholar
  38. 38.
    M.R. Akbarpour and A. Ekrami: Mater. Sci. Eng. A, 2008, vol. 477, pp. 306-10.CrossRefGoogle Scholar
  39. 39.
    H.-G. Lambers, S. Tschumak, H.J. Maier, and D. Canadinc: Int. J. Struct. Change. Solids., 2011, vol. 3, pp. 15-27.Google Scholar
  40. 40.
    A. Kumar, S.B. Singh, and K.K. Ray: Mater. Sci. Eng. A, 2008, vol. 474, pp. 270-82.CrossRefGoogle Scholar
  41. 41.
    Y. Ustinovshikov, A. Ruts, O. Bannykh, V. Blinov, and M. Kostina: Mater. Sci. Eng. A, 1999, vol. 262, pp. 82-87.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Hyeok Jae Jeong
    • 1
  • Nam Suk Lim
    • 2
  • Bong Ho Lee
    • 3
    • 6
  • Chan Gyung Park
    • 1
    • 3
  • Sunghak Lee
    • 1
    • 4
  • Seong-Hoon Kang
    • 5
  • Ho Won Lee
    • 5
  • Hyoung Seop Kim
    • 1
    • 4
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Technical Research LabPOSCOPohangRepublic of Korea
  3. 3.National Institute for Nanomaterials TechnologyPohangRepublic of Korea
  4. 4.Center for Advanced Aerospace MaterialsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  5. 5.Materials Deformation DepartmentKorea Institute of Materials Science (KIMS)ChangwonRepublic of Korea
  6. 6.Center for Core Research Facilities(CCRF)Daegu Gyeongbuk Institute of Science & Technology (DGIST)DaeguRepublic of Korea

Personalised recommendations