Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 12, pp 5419–5430 | Cite as

Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications

  • Junghoon Lee
  • Seok Su Sohn
  • Seokmin Hong
  • Byeong-Chan Suh
  • Sung-Kyu Kim
  • Byeong-Joo Lee
  • Nack J. Kim
  • Sunghak LeeEmail author
Article

Abstract

Effects of Mn addition (17, 19, and 22 wt pct) on tensile and Charpy impact properties in three austenitic Fe-Mn-C-Al-based steels were investigated at room and cryogenic temperatures in relation with deformation mechanisms. Tensile strength and elongation were not varied much with Mn content at room temperature, but abruptly decreased with decreasing Mn content at 77 K (−196 °C). Charpy impact energies at 273 K (0 °C) were higher than 200 J in the three steels, but rapidly dropped to 44 J at 77 K (−196 °C) in the 17Mn steel, while they were higher than 120 J in the 19Mn and 22Mn steels. Although the cryogenic-temperature stacking fault energies (SFEs) were lower by 30 to 50 pct than the room-temperature SFEs, the SFE of the 22Mn steel was situated in the TWinning-induced plasticity regime. In the 17Mn and 19Mn steels, however, α′-martensites were formed by the TRansformation-induced plasticity mechanism because of the low SFEs. EBSD analyses along with interrupted tensile tests at cryogenic temperature showed that the austenite was sufficiently deformed in the 19Mn steel even after the formation of α′-martensite, thereby leading to the high impact energy over 120 J.

Keywords

Austenite Martensite Stack Fault Energy Charpy Impact Cryogenic Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Ministry of Knowledge Economy under a Grant No. 10044574-2013-45.

References

  1. 1.
    T.S. Byun, N. Hashimoto, and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889-99.CrossRefGoogle Scholar
  2. 2.
    K.H. Kwon, J.S. Jeong, J.-K. Choi, Y.M. Koo, Y. Tomota, and N.J. Kim: Met. Mater. Int., 2012, vol. 18, pp. 751-55.CrossRefGoogle Scholar
  3. 3.
    J.K. Choi, S.G. Lee, Y.H. Park, I.W. Han, and J.W. Morris: Proc. 22th Int. Offshore and Polar Engineering Conf., International Society of Offshore and Polar Engineers, Greece, 2012, p. 29.Google Scholar
  4. 4.
    J.W. Morris, S.K. Hwang, K.A. Yushchenko, V.I. Belotzerkovetz, and O.G. Kvasnevskii: Adv. Cryog. Eng., 1978, vol. 24, pp. 91-102.CrossRefGoogle Scholar
  5. 5.
    S. Vervynckt, P. Thibaux, and K. Verbeken: Met. Mater. Int., 2012, vol. 18, pp. 37-46.CrossRefGoogle Scholar
  6. 6.
    S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng., 2004, vol. A387-389, pp. 158-62.CrossRefGoogle Scholar
  7. 7.
    A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1688-704.CrossRefGoogle Scholar
  8. 8.
    L. Remy: Acta Metall., 1978, vol. 36, pp. 47-63.Google Scholar
  9. 9.
    S. Allain, O. Bouaziz, and J.P. Chateau: Scr. Mater., 2010, vol. 62, pp. 500-3.CrossRefGoogle Scholar
  10. 10.
    I.C. Jung and B.C. De Cooman: Acta Mater., 2013, vol. 61, pp. 6724-35.CrossRefGoogle Scholar
  11. 11.
    J.-E. Jin, M. Jung, C.-Y. Lee, J. Jeong, and Y.-K. Lee: Met. Mater. Int., 2012, vol. 18, pp. 419-23.CrossRefGoogle Scholar
  12. 12.
    M.-K. Paek, J.-M. Jang, K.-H. Do, and J.-J. Pak: Met. Mater. Int., 2013, vol. 19, pp. 1077-81.CrossRefGoogle Scholar
  13. 13.
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugya, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141-68.CrossRefGoogle Scholar
  14. 14.
    Y. Tomota, M. Strum, and J.W. Morris: Metall. Trans. A, 1986, vol. 17A, pp. 537-47.CrossRefGoogle Scholar
  15. 15.
    I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, and Y.K. Lee: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 9925-32.CrossRefGoogle Scholar
  16. 16.
    S. Hong, S.Y. Shin, H.S. Kim, S. Lee, S.K. Kim, K.G. Chin, and N.J. Kim: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1870-83.CrossRefGoogle Scholar
  17. 17.
    K. Renard, S. Ryelandt, and P.J. Jacques: Mater. Sci. Eng., 2010, vol. 527, pp. 2969-77.CrossRefGoogle Scholar
  18. 18.
    G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-46.CrossRefGoogle Scholar
  19. 19.
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-409.CrossRefGoogle Scholar
  20. 20.
    D. Broek: Engns. Fracture Mech., 1973, vol. 5, pp. 55-6.CrossRefGoogle Scholar
  21. 21.
    J.R. Low: Engns. Fracture Mech., 1968, vol. 1, pp. 47-8.CrossRefGoogle Scholar
  22. 22.
    Y. Tomota, M. Strum, and J.W. Morris: Metall. Trans. A, 1987, vol. 18A, pp. 1073-81.CrossRefGoogle Scholar
  23. 23.
    J. Charles and A. Berghezan: Cryogenics, 1981, vol. 21, pp. 278-80.CrossRefGoogle Scholar
  24. 24.
    S. Curtze and V.-T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129-41.CrossRefGoogle Scholar
  25. 25.
    A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng., 2008, vol. A483-484, pp. 184-87.CrossRefGoogle Scholar
  26. 26.
    N.S. Lim, H.S. Park, S.I. Kim, and C.H. Park: Met. Mater. Int., 2012, vol. 18, pp. 647-54.CrossRefGoogle Scholar
  27. 27.
    L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99-107.CrossRefGoogle Scholar
  28. 28.
    T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim: Acta Mater., 2010, vol. 58, pp. 3173-86.CrossRefGoogle Scholar
  29. 29.
    E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1223-33.CrossRefGoogle Scholar
  30. 30.
    P.M. Kelly: Acta Metall., 1965, vol. 13, pp. 635-46.CrossRefGoogle Scholar
  31. 31.
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076-90.CrossRefGoogle Scholar
  32. 32.
    J.-Y. Park and Y.-S. Ahn: Korean J. Met. Mater., 2012, vol. 50, pp. 793-800.Google Scholar
  33. 33.
    J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359-71.CrossRefGoogle Scholar
  34. 34.
    B. Sundman, B. Jansson, and J.-O. Andersson: Calphad, 1985, vol. 9, pp. 153-90.CrossRefGoogle Scholar
  35. 35.
    TCFE2000: The Thermo-Calc Steels Database, upgraded by B.-J. Lee, B. Sundman at KTH, KTH, Stockholm, 1999.Google Scholar
  36. 36.
    K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee: J. Alloys. Compd., 2010, vol. 505, pp. 217-23.CrossRefGoogle Scholar
  37. 37.
    P. Müllner, C. Solenthaler, P.J. Uggowotzer, and M.O. Speidel: Acta Metall., 1994, vol. 42, pp. 2211-7.CrossRefGoogle Scholar
  38. 38.
    B. Hwang, T.-H. Lee, S.-J. Park, C.-S. Oh, and S.-J. Kim: Mater. Sci. Eng., 2011, vol. A528, pp. 7257-66.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Junghoon Lee
    • 1
  • Seok Su Sohn
    • 1
  • Seokmin Hong
    • 2
  • Byeong-Chan Suh
    • 3
  • Sung-Kyu Kim
    • 4
  • Byeong-Joo Lee
    • 1
    • 5
  • Nack J. Kim
    • 3
  • Sunghak Lee
    • 1
    • 5
    Email author
  1. 1.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.Nuclear Materials Safety Research DivisionKorea Atomic Energy Research InstituteDaejeonSouth Korea
  3. 3.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangKorea
  4. 4.HIMASS Research Project Team, Technical Research LaboratoriesPOSCOPohangKorea
  5. 5.Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations