Metallurgical and Materials Transactions A

, Volume 45, Issue 12, pp 5767–5776 | Cite as

Mechanical Strength and Failure Characteristics of Cast Mg-9 pctAl-1 pctZn Alloys Produced by a Heated-Mold Continuous Casting Process: Tensile Properties

  • Mitsuhiro OkayasuEmail author
  • Shuhei Takeuchi
  • Hiroaki Ohfuji


The mechanical properties and failure characteristics of a cast Mg alloy (AZ91: Mg-Al8.9-Zn0.6-Mn0.2) produced by a heated-mold continuous casting process (HMC) are investigated. In a modification of the original HMC process, the cooling of the liquid alloy by direct water spray is carried out in an atmosphere of high-purity argon gas. The HMC-AZ91 alloy exhibits excellent mechanical properties (high strength and high ductility) that are about twice as high as those for the same alloy produced by conventional gravity casting. The increased material strength and ductility of the HMC sample are attributed to nanoscale and microscale microstructural characteristics. The fine grains and tiny spherical eutectic structures (e.g., Mg17Al12 and Al6Mn) distributed randomly in the matrix of the HMC alloy result in resistance to dislocation movement, leading to high tensile strength. Basal slip on (0001) planes in the relatively organized crystal orientation of the HMC alloy, as well as grain boundary sliding through tiny spherical eutectic structures, results in high ductility. Details of the failure mechanism under static loading in the HMC alloy are also discussed using failure models.


Crystal Orientation Basal Slip Squeeze Casting Gravity Casting AZ91 Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a grant (Grant-in-Aid for Scientific Research (C), 2014) from the Japanese Government (Ministry of Education, Science, Sports and Culture) and Ehime University.


  1. 1.
    M.K. Kulekei: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851–65.CrossRefGoogle Scholar
  2. 2.
    A. Lohmüller, M. Scharrer, R. Jenning, M. Hilbinger, and M. Hartmann: Proc. 6th Int. Conf. Mg Alloy and Appl. Wolfsburg, Nov. 2003, pp. 738–43.Google Scholar
  3. 3.
    M. Okayasu, K. Sato, and M. Mizuno: Mater. Sci. Technol., 2011, vol. 27, pp. 76–80.CrossRefGoogle Scholar
  4. 4.
    X. Du, and E. Zhang: Mater. Lett., 2007, vol. 61, pp. 2333–37.CrossRefGoogle Scholar
  5. 5.
    C.S. Goh, K.S. Soh, P.H. Oon, and B.W. Chua: Mater. Des., 2010, vol. 31, pp. 550–53.CrossRefGoogle Scholar
  6. 6.
    S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima: J. Mater. Sci. Eng. A, 2009, vol. 523, pp. 47–52.CrossRefGoogle Scholar
  7. 7.
    W.D. Callister Jr.: Materials Science and Engineering, 7th ed., Wiley, Hoboken, NJ, 2007, p. 378.Google Scholar
  8. 8.
    Q. Wang, W. Chen, W. Ding, Y. Zhu, and M. Mabuchi: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 787–794.CrossRefGoogle Scholar
  9. 9.
    K. Hirai, H. Somekawa, Y. Takigawa, and K. Higashi: Mater. Sci. Eng. A, 2005, vol. 403, pp. 276–80.CrossRefGoogle Scholar
  10. 10.
    S. Tzamtzis, H. Zhang, N.H. Babu, and Z. Fan: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2929–34.CrossRefGoogle Scholar
  11. 11.
    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, New York, 1996, pp. 89–92.Google Scholar
  12. 12.
    C. Potzies, and K.U. Kainer: Adv. Eng. Mater., 2004, vol. 6, pp. 281–89.CrossRefGoogle Scholar
  13. 13.
    Y.H. Wei, Q.D. Wang, Y.P. Zhu, H.T. Zhou, W.J. Ding, Y. Chino, and M. Mabuchi: Mater. Sci. Eng. A, 2003, vol. 360, pp. 107–15.CrossRefGoogle Scholar
  14. 14.
    W.-J. Kim, S.W. Chung, C.S. Chung, and D. Kum: Acta Mater., 2001, vol. 49, pp. 3337–45.CrossRefGoogle Scholar
  15. 15.
    X. Wu, and Y. Liu: Scripta Mater., 2002, vol. 46, pp. 269–74.CrossRefGoogle Scholar
  16. 16.
    F. Hnilica, V. Očenášek, I. Stulíková, and B. Smola: Kov Mater., 2005, vol. 43, pp. 300–16.Google Scholar
  17. 17.
    A. Luo, and M.O. Pekguleryuz: J. Mater. Sci., 1994, vol. 29, pp. 5259–71.CrossRefGoogle Scholar
  18. 18.
    C.H. Cáceres, C.J. Davidson, J.R. Griffiths, and C.L. Newton: Mater. Sci. Eng. A, 2002, vol. 325, pp. 344–55.CrossRefGoogle Scholar
  19. 19.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Mater. Trans. JIM, 2001, vol. 42, pp. 1172–1176.CrossRefGoogle Scholar
  20. 20.
    A. Ohno: Solidification, 1st ed., Springer, Germany. 1987, pp. 113–18.Google Scholar
  21. 21.
    Z.M. Zhang, T. Lii, C.J. Xu, and X.F. Guo: Acta. Metall. Sin. (Engl. Lett.), 2008, vol. 21, pp. 275–81.Google Scholar
  22. 22.
    M. Okayasu, Y. Ohkura, S. Takeuchi, S. Takasu, H. Ohfuji, and T. Shiraishi: J. Mater. Sci. Eng. A, 2012, vol. 543, pp. 185–92.CrossRefGoogle Scholar
  23. 23.
    E. Cerri, P. Leo, and P.P. De Marco: J. Mater. Process Technol., 2007, vol. 189, pp. 97–106.CrossRefGoogle Scholar
  24. 24.
    A. Munitz, C. Cotler, H. Shaham, and G. Kohn: Weld. J., 2000, vol. 79, pp. 202s–208s.Google Scholar
  25. 25.
    H. Harada, S. Nishida, E. Masaki, and H. Watari, Metall. Mater. Trans. B, 2014, vol. 45B, pp. 427–37.CrossRefGoogle Scholar
  26. 26.
    M. Okayasu, S. Takeuchi, Y. Ohkura, and T. Shiraishi: Int. J. Cast Metal. Res., 2013, vol. 26, pp. 160–67.CrossRefGoogle Scholar
  27. 27.
    S. Tzamtzis, H. Zhang, N.H. Babu, and Z. Fan: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2929–34.CrossRefGoogle Scholar
  28. 28.
    J. Zhang, X. Niu, X. Qiu, K. Liu, C. Nan, D. Tang, and J. Meng: J. Alloys Compd., 2009, vol. 471, pp. 322–30.CrossRefGoogle Scholar
  29. 29.
    H. Hu: J. Mater. Sci., 1998, vol. 33, pp. 1579–89.CrossRefGoogle Scholar
  30. 30.
    Y. Zhan, Z. Hong-yang, H. Xiao-dong, and J. Dong-ying: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 318–23.CrossRefGoogle Scholar
  31. 31.
    M. Okayasu, S. Takeuchi, and T. Shiraishi: Int. J. Cast Met. Res., 2013, vol. 26, pp. 319–29.CrossRefGoogle Scholar
  32. 32.
    K. Sugiyama, K. Harada, and S. Hattori: Wear, 2008, vol. 265, pp. 713–20.CrossRefGoogle Scholar
  33. 33.
    S. Kleiner, O. Beffort, A. Wahlen, and P.J. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 277–80.CrossRefGoogle Scholar
  34. 34.
    M.M. Avedesian, and H. Baker: ASM Specialty Handbook, Magnesium and Magnesium Alloys, 1st ed., Materials Information Society, ASM International, 1999, p. 67.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Mitsuhiro Okayasu
    • 1
    Email author
  • Shuhei Takeuchi
    • 1
  • Hiroaki Ohfuji
    • 2
  1. 1.Department of Materials Science and EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Geodynamics Research CenterEhime UniversityMatsuyamaJapan

Personalised recommendations