Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 12, pp 5318–5331 | Cite as

Effects of Friction Stir Processing Parameters and In Situ Passes on Microstructure and Tensile Properties of Al-Si-Mg Casting

  • G. R. Cui
  • D. R. Ni
  • Z. Y. MaEmail author
  • S. X. Li
Article

Abstract

Friction stir processing (FSP) was applied to modify the microstructure of an as-cast A356 alloy. The effects of rotation rate, travel speed, in situ FSP pass, FSP direction, and artificial aging on microstructures and tensile properties were investigated. FSP broke up the coarse eutectic Si phase into 2.5 to 3.5 μm particles and distributed them homogeneously, and resulted in the dissolution of the coarse Mg2Si particles and the elimination of porosity, thereby improving both the strength and the ductility of the casting. Increasing the rotation rate was beneficial to breaking up and dissolving the particles, but it contributed little to eliminating the porosity. The travel speed did not affect the size of the particles apparently, but lower speed was beneficial to eliminating the porosity. 2-pass FSP showed an obvious advantage in the microstructure modification and tensile properties compared with the single-pass. However, a further increase of FSP passes only resulted in slight improvement. The FSP direction of the following pass did not show distinct effect on the microstructure and tensile properties. After post-FSP artificial aging, the strengthening phase (β″-Mg2Si) precipitated, which increased the strength and decreased the ductility of the FSP samples.

Keywords

Rotation Rate Friction Stir Processing Travel Speed A356 Alloy Stir Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

FSP

Friction stir processing

FSW

Friction stir welding

BM

Base material

SZ

Stirred zone

DSC

Differential scanning calorimeter

SEM

Scanning electron microscopy

YS

Yield strength

UTS

Ultimate tensile strength

UEL

Uniform elongation

EL

Elongation

OD

Opposite direction

Notes

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No. 51331008.

References

  1. 1.
    K.T. Kashyap, S. Murali, K.S. Raman, K.S.S. Murthy: Mater. Sci. Technol., 1994, vol. 9, pp. 189–203.CrossRefGoogle Scholar
  2. 2.
    M.H. Lee, J.J. Kim, K.H. Kim, N.J. Kim, S. Lee, E.W. Lee: Mater. Sci. Eng. A, 2003, vol. 340, pp. 123–29.CrossRefGoogle Scholar
  3. 3.
    D.L. Zhang, L. Zheng: Metall. Mater. Trans. A, 1996, vol. 27, pp. 3983–91.CrossRefGoogle Scholar
  4. 4.
    Q.G. Wang, C.H. Caceres: Mater. Sci. Eng. A, 1998, vol. 241, pp. 72–82.CrossRefGoogle Scholar
  5. 5.
    M.E. Seniw, J.G. Conley, M.E. Fine: Mater. Sci. Eng. A, 2000, vol. 285, pp. 43–48.CrossRefGoogle Scholar
  6. 6.
    M.K. Surappa, E. Blank, J.C. Jaquet: Scripta Metall., 1986, vol. 20, pp. 1281–86.CrossRefGoogle Scholar
  7. 7.
    G. Atxaga, A. Pelayo, A.M. Irisarri: Mater. Sci. Technol., 2001, vol. 17, pp. 446–50.CrossRefGoogle Scholar
  8. 8.
    S. Kumai, J. Hu, Y. Higo, S. Nunomura: Acta Mater., 1996, vol. 44, pp. 2249–57.CrossRefGoogle Scholar
  9. 9.
    M.E. Seniw, J.G. Conley, M.E. Fine: NSF Symposium on Micromechanic Modeling of Industrial Materials. Elsevier Science SA, Seattle, WA, 1998, pp. 43–48.Google Scholar
  10. 10.
    W.W. Bose-Filho, E.R. de Freitas, V.F. da Silva, M.T. Milan, D. Spinelli: Int. J. Fatigue, 2007, vol. 29, pp. 1846–54.CrossRefGoogle Scholar
  11. 11.
    H.R. Ammar, A.M. Samuel, F.H. Samuel: Mater. Sci. Eng. A, 2008, vol. 473, pp. 65–75.CrossRefGoogle Scholar
  12. 12.
    F.M. Al-Kharafi, W.A. Badawy: Electrochim. Acta, 1995, vol. 40, pp. 1811–17.CrossRefGoogle Scholar
  13. 13.
    J. Quaresma, C. Santos, A. Garcia: Metall. Mater. Trans. A, 2000, vol. 31, pp. 3167–78.CrossRefGoogle Scholar
  14. 14.
    P.R. Goulart, J.E. Spinelli, W.R. Osóio, A. Garcia: Mater. Sci. Eng. A, 2006, vol. 421, pp. 245–53.CrossRefGoogle Scholar
  15. 15.
    K. Lee, Y.N. Kwon, S. Lee: J. Alloy. Compd., 2008, vol. 461, pp. 532–41.CrossRefGoogle Scholar
  16. 16.
    L.B. Wang, S. Shivkumar: Z. Metallk., 1995, vol. 86, pp. pp. 441–45.Google Scholar
  17. 17.
    T.J. Hurley and R.G. Atkinson: Giessereipraxis, 1987, pp. 1–7.Google Scholar
  18. 18.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: G.B. Patent Application No. 9125978.8, 1991.Google Scholar
  19. 19.
    W.B. Lee, Y.M. Yeon, S.B. Jung: Mater. Sci. Eng. A, 2003, vol. 355, pp. 154–59.CrossRefGoogle Scholar
  20. 20.
    Z.Y. Ma, R.S. Mishra, M.W. Mahoney: Scripta Mater., 2004, vol. 50, pp. 931–35.CrossRefGoogle Scholar
  21. 21.
    S.R. Sharma, Z.Y. Ma, R.S. Mishra: Scripta Mater., 2004, vol. 51, pp. 237–41.CrossRefGoogle Scholar
  22. 22.
    Z.Y. Ma, S.R. Sharma, R.S. Mishra: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3323–36.CrossRefGoogle Scholar
  23. 23.
    Z.Y. Ma, S.R. Sharma, R.S. Mishra: Mater. Sci. Eng. A, 2006, vol. 433, pp. 269–78.CrossRefGoogle Scholar
  24. 24.
    Z.Y. Ma, A.L. Pilchak, M.C. Juhas, J.C. Williams: Scripta Mater., 2008, vol. 58, pp. 361–66.CrossRefGoogle Scholar
  25. 25.
    S. Jana, R.S. Mishra, J.B. Baumann, G. Grant: Scripta Mater., 2009, vol. 61, 992–95.CrossRefGoogle Scholar
  26. 26.
    L. Karthikeyan, V.S. Senthilkumar, K.A. Padmanabhan: Mater. Des., 2010, vol. 31, pp. 761–71.CrossRefGoogle Scholar
  27. 27.
    N. Sun, D. Apelian: JOM, 2011, vol. 63, pp. 44–50.CrossRefGoogle Scholar
  28. 28.
    S. Tutunchilar, M.K. Besharati Givi, M. Haghpanahi, P. Asadi: Mater. Sci. Eng. A, 2012, vol. 534, pp. 557–67.CrossRefGoogle Scholar
  29. 29.
    S.A. Alidokht, A. Abdollah-zadeh, S. Soleymani, T. Saeid, H. Assadi: Mater. Charact., 2012, vol. 63, pp. 90–97.CrossRefGoogle Scholar
  30. 30.
    T.S. Mahmoud, O.M. Shaban, H.M. Zakaria, T.A. Khalifa: Mater. Sci. Technol., 2010, vol. 26, pp. 1120–24.CrossRefGoogle Scholar
  31. 31.
    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, W.H. Bingel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.CrossRefGoogle Scholar
  32. 32.
    Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda: Mater. Sci. Eng. A, 2003, vol. 354, pp. 298–305.CrossRefGoogle Scholar
  33. 33.
    E. Ogris, A. Wahlen, H. Lühinger, P.J. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263–69.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangP.R.China
  2. 2.Harbin Institute of Technology at WeihaiWeihaiP.R.China

Personalised recommendations