Metallurgical and Materials Transactions A

, Volume 45, Issue 11, pp 5158–5172 | Cite as

On the Transition of Internal to External Selective Oxidation on CMnSi TRIP Steel

  • Lawrence Cho
  • Geun Su Jung
  • Bruno C. De Cooman


The selective oxidation of a CMnSi transformation-induced plasticity (TRIP) steel during intercritical annealing (IA) in a N+ 10 pct H2 gas atmosphere with a dew point (DP) in the range from 213 K to 278 K (−60 °C to +5 °C) was investigated by transmission electron microscopy. The decarburization during IA resulted in a fully ferritic matrix at the TRIP steel surface. Annealing in high DP gas atmospheres resulted in a reduction of the oxide layer thickness at the surface and an increase of the depth of the subsurface internal oxidation. The experimental results were compared to the calculations of the DP for the transition from internal to external oxidation based on the Wagner model. The evolution of the surface oxide composition during annealing was analyzed thermodynamically by means of the chemical potential diagram for the surface oxides. In the high DP atmosphere conditions, mainly, Mn-rich xMnO·SiO2 (1 < x < 2) oxides were formed at the surface, while Si-rich xMnO·SiO2 (x < 1) oxides were formed by internal oxidation. The use of a high DP gas atmosphere is therefore advantageous to induce internal selective oxidation and reduce the amount of surface oxides. It also leads to the formation of Mn-rich xMnO·SiO2 (1 < x < 2) oxides.


Austenite Internal Oxidation Trip Steel Intercritical Annealing External Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support of Dr. Myung Soo Kim and Dr. Young Ha Kim of the POSCO technical Research Laboratories, Gwangyang, South Korea.


  1. 1.
    J. Mahieu, S. Claessens, B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–08.CrossRefGoogle Scholar
  2. 2.
    X.V. Eynde, J.P. Servais, M. Lamberigts: Surf. Interface Anal., 2003, vol. 35, pp. 1004–14.CrossRefGoogle Scholar
  3. 3.
    J. Mahieu, S. Claessens, B.C. De Cooman, and F. Goodwin: The 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH 2004), Chicago, Illinois, 2004, Association for Iron and Steel Technology, pp. 529–38.Google Scholar
  4. 4.
    Y.F. Gong, H.S. Kim, B.C. De Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.CrossRefGoogle Scholar
  5. 5.
    Y.F. Gong, H.S. Kim, B.C. De Cooman: ISIJ Int., 2009, vol. 49, pp. 557–63.CrossRefGoogle Scholar
  6. 6.
    L. Cho, M.S. Kim, Y.H. Kim, S.J. Lee, and B.C. De Cooman: Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH 2011), Genova, Italy, 2011, Associazione Italiana di Metallurgia, pp. 145–52.Google Scholar
  7. 7.
    X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, Y.W. Kim: Scripta Mater., 2007, vol. 57, pp. 113–16.CrossRefGoogle Scholar
  8. 8.
    A.R. Marder: Prog. Mater. Sci., 2000, vol. 45, pp. 191–271.CrossRefGoogle Scholar
  9. 9.
    B. Mintz: Int. Mater. Rev., 2001, vol. 46, pp. 169–97.CrossRefGoogle Scholar
  10. 10.
    L. Chen, H.S. Kim, S.K. Kim, B.C. De Cooman: ISIJ Int., 2007, vol. 47, pp. 1804–12.CrossRefGoogle Scholar
  11. 11.
    C.E. Jordan, K.M. Goggins, A.R. Marder: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2101–09.CrossRefGoogle Scholar
  12. 12.
    I. Hertveldt, B.C. De Cooman, S. Claessens: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1225–32.CrossRefGoogle Scholar
  13. 13.
    S. Feliu, M. Pérez-Revenga: Acta Mater., 2005, vol. 53, pp. 2857–66.CrossRefGoogle Scholar
  14. 14.
    M. Blumenau, M. Norden, F. Friedel, K. Peters: Steel Res. Int., 2010, vol. 81, pp. 1125–36.CrossRefGoogle Scholar
  15. 15.
    C. Wagner: Z. für Elektrochem. Ber. Bunsenges. Phys. Chem., 1959, vol. 63, pp. 772–82.Google Scholar
  16. 16.
    G. Böhm, M. Kahlweit: Acta Metall., 1964, vol. 12, pp. 641–48.CrossRefGoogle Scholar
  17. 17.
    R.A. Rapp: Corrosion, 1965, vol. 21, pp. 382–401.CrossRefGoogle Scholar
  18. 18.
    Y. Niu, F. Gesmundo: Oxid. Met., 2006, vol. 65, pp. 329–55.CrossRefGoogle Scholar
  19. 19.
    D. Huin, P. Flauder, J.B. Leblond: Oxid. Met., 2005, vol. 64, pp. 131–67.CrossRefGoogle Scholar
  20. 20.
    J.B. Brunac, D. Huin, J.B. Leblond: Oxid. Met., 2010, vol. 73, pp. 565–89.CrossRefGoogle Scholar
  21. 21.
    R. Rapp: Acta Metall., 1961, vol. 9, pp. 730–41.CrossRefGoogle Scholar
  22. 22.
    L. Cho, S. Lee, M. Kim, Y. Kim, B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 362–71.CrossRefGoogle Scholar
  23. 23.
    J. Takada, M. Adachi: J. Mater. Sci., 1986, vol. 21, pp. 2133–37.CrossRefGoogle Scholar
  24. 24.
    H. Oikawa: Technology Reports, Tohoku University, 1983, vol. 48, pp. 7–77.Google Scholar
  25. 25.
    D.R. Lide: CRC Handbook of Chemistry and Physics, 86th ed., CRC Press, Boca Raton, 2005.Google Scholar
  26. 26.
    L. Cho, M.S. Kim, Y.H. Kim, B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5081–95.CrossRefGoogle Scholar
  27. 27.
    H. Liu, Y. He, L. Li: Appl. Surf. Sci., 2009, vol. 256, pp. 1399–1403.CrossRefGoogle Scholar
  28. 28.
    H. Liu, Y. He, S. Swaminathan, M. Rohwerder, L. Li: Surf. Coat. Technol., 2011, vol. 206, pp. 1237–43.CrossRefGoogle Scholar
  29. 29.
    Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, S. Yamaguchi: ISIJ Int., 2009, vol. 49, pp. 564–73.CrossRefGoogle Scholar
  30. 30.
    N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, New York, 2006, pp. 114–15.Google Scholar
  31. 31.
    J.M. Mataigne, M. Lamberigts, and V. Leroy: Developments in the Annealing of Sheet Steels, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 1992, pp. 511–28.Google Scholar
  32. 32.
    F. Wang: Oxid. Met., 1997, vol. 48, pp. 215–24.CrossRefGoogle Scholar
  33. 33.
    Z. Liu, W. Gao, K.L. Dahm, F. Wang: Acta Mater., 1998, vol. 46, pp. 1691–700.CrossRefGoogle Scholar
  34. 34.
    S. Guan, W. Smeltzer: Oxid. Met., 1994, vol. 42, pp. 375–91.Google Scholar
  35. 35.
    J. Töpfer, R. Dieckmann: Solid State Ionics, 2010, vol. 181, pp. 479–88.CrossRefGoogle Scholar
  36. 36.
    I. Burn, S. Neirman: J. Mater. Sci., 1982, vol. 17, pp. 3510–24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Lawrence Cho
    • 1
  • Geun Su Jung
    • 1
  • Bruno C. De Cooman
    • 1
    • 2
  1. 1.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangSouth Korea
  2. 2.Materials Design LaboratoryPohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations