# On the Transition of Internal to External Selective Oxidation on CMnSi TRIP Steel

- 370 Downloads
- 9 Citations

## Abstract

The selective oxidation of a CMnSi transformation-induced plasticity (TRIP) steel during intercritical annealing (IA) in a N_{2 }+ 10 pct H_{2} gas atmosphere with a dew point (DP) in the range from 213 K to 278 K (−60 °C to +5 °C) was investigated by transmission electron microscopy. The decarburization during IA resulted in a fully ferritic matrix at the TRIP steel surface. Annealing in high DP gas atmospheres resulted in a reduction of the oxide layer thickness at the surface and an increase of the depth of the subsurface internal oxidation. The experimental results were compared to the calculations of the DP for the transition from internal to external oxidation based on the Wagner model. The evolution of the surface oxide composition during annealing was analyzed thermodynamically by means of the chemical potential diagram for the surface oxides. In the high DP atmosphere conditions, mainly, Mn-rich *x*MnO·SiO_{2} (1 < *x* < 2) oxides were formed at the surface, while Si-rich *x*MnO·SiO_{2} (*x* < 1) oxides were formed by internal oxidation. The use of a high DP gas atmosphere is therefore advantageous to induce internal selective oxidation and reduce the amount of surface oxides. It also leads to the formation of Mn-rich *x*MnO·SiO_{2} (1 < *x* < 2) oxides.

## Keywords

Austenite Internal Oxidation Trip Steel Intercritical Annealing External Oxidation## Notes

### Acknowledgments

The authors gratefully acknowledge the support of Dr. Myung Soo Kim and Dr. Young Ha Kim of the POSCO technical Research Laboratories, Gwangyang, South Korea.

## References

- 1.J. Mahieu, S. Claessens, B.C. De Cooman:
*Metall. Mater. Trans. A*, 2001, vol. 32A, pp. 2905–08.CrossRefGoogle Scholar - 2.X.V. Eynde, J.P. Servais, M. Lamberigts:
*Surf. Interface Anal.*, 2003, vol. 35, pp. 1004–14.CrossRefGoogle Scholar - 3.J. Mahieu, S. Claessens, B.C. De Cooman, and F. Goodwin:
*The 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet*(*GALVATECH 2004*), Chicago, Illinois, 2004, Association for Iron and Steel Technology, pp. 529–38.Google Scholar - 4.Y.F. Gong, H.S. Kim, B.C. De Cooman:
*ISIJ Int.*, 2008, vol. 48, pp. 1745–51.CrossRefGoogle Scholar - 5.Y.F. Gong, H.S. Kim, B.C. De Cooman:
*ISIJ Int.*, 2009, vol. 49, pp. 557–63.CrossRefGoogle Scholar - 6.L. Cho, M.S. Kim, Y.H. Kim, S.J. Lee, and B.C. De Cooman:
*Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet*(*GALVATECH 2011*), Genova, Italy, 2011, Associazione Italiana di Metallurgia, pp. 145–52.Google Scholar - 7.X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, Y.W. Kim:
*Scripta Mater.*, 2007, vol. 57, pp. 113–16.CrossRefGoogle Scholar - 8.A.R. Marder:
*Prog. Mater. Sci.*, 2000, vol. 45, pp. 191–271.CrossRefGoogle Scholar - 9.B. Mintz:
*Int. Mater. Rev.*, 2001, vol. 46, pp. 169–97.CrossRefGoogle Scholar - 10.L. Chen, H.S. Kim, S.K. Kim, B.C. De Cooman:
*ISIJ Int.*, 2007, vol. 47, pp. 1804–12.CrossRefGoogle Scholar - 11.C.E. Jordan, K.M. Goggins, A.R. Marder:
*Metall. Mater. Trans. A*, 1994, vol. 25A, pp. 2101–09.CrossRefGoogle Scholar - 12.I. Hertveldt, B.C. De Cooman, S. Claessens:
*Metall. Mater. Trans. A*, 2000, vol. 31A, pp. 1225–32.CrossRefGoogle Scholar - 13.S. Feliu, M. Pérez-Revenga:
*Acta Mater.*, 2005, vol. 53, pp. 2857–66.CrossRefGoogle Scholar - 14.M. Blumenau, M. Norden, F. Friedel, K. Peters:
*Steel Res. Int.*, 2010, vol. 81, pp. 1125–36.CrossRefGoogle Scholar - 15.C. Wagner: Z.
*für Elektrochem. Ber. Bunsenges. Phys. Chem.*, 1959, vol. 63, pp. 772–82.Google Scholar - 16.G. Böhm, M. Kahlweit:
*Acta Metall.*, 1964, vol. 12, pp. 641–48.CrossRefGoogle Scholar - 17.R.A. Rapp:
*Corrosion*, 1965, vol. 21, pp. 382–401.CrossRefGoogle Scholar - 18.Y. Niu, F. Gesmundo:
*Oxid. Met.*, 2006, vol. 65, pp. 329–55.CrossRefGoogle Scholar - 19.D. Huin, P. Flauder, J.B. Leblond:
*Oxid. Met.*, 2005, vol. 64, pp. 131–67.CrossRefGoogle Scholar - 20.J.B. Brunac, D. Huin, J.B. Leblond:
*Oxid. Met.*, 2010, vol. 73, pp. 565–89.CrossRefGoogle Scholar - 21.R. Rapp:
*Acta Metall.*, 1961, vol. 9, pp. 730–41.CrossRefGoogle Scholar - 22.L. Cho, S. Lee, M. Kim, Y. Kim, B.C. De Cooman:
*Metall. Mater. Trans. A*, 2013, vol. 44A, pp. 362–71.CrossRefGoogle Scholar - 23.J. Takada, M. Adachi:
*J. Mater. Sci.*, 1986, vol. 21, pp. 2133–37.CrossRefGoogle Scholar - 24.H. Oikawa:
*Technology Reports*, Tohoku University, 1983, vol. 48, pp. 7–77.Google Scholar - 25.D.R. Lide:
*CRC Handbook of Chemistry and Physics*, 86th ed., CRC Press, Boca Raton, 2005.Google Scholar - 26.L. Cho, M.S. Kim, Y.H. Kim, B.C. De Cooman:
*Metall. Mater. Trans. A*, 2013, vol. 44A, pp. 5081–95.CrossRefGoogle Scholar - 27.H. Liu, Y. He, L. Li:
*Appl. Surf. Sci.*, 2009, vol. 256, pp. 1399–1403.CrossRefGoogle Scholar - 28.H. Liu, Y. He, S. Swaminathan, M. Rohwerder, L. Li:
*Surf. Coat. Technol.*, 2011, vol. 206, pp. 1237–43.CrossRefGoogle Scholar - 29.Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, S. Yamaguchi:
*ISIJ Int.*, 2009, vol. 49, pp. 564–73.CrossRefGoogle Scholar - 30.N. Birks, G.H. Meier, and F.S. Pettit:
*Introduction to the High Temperature Oxidation of Metals*, 2nd ed., Cambridge University Press, New York, 2006, pp. 114–15.Google Scholar - 31.J.M. Mataigne, M. Lamberigts, and V. Leroy:
*Developments in the Annealing of Sheet Steels*, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 1992, pp. 511–28.Google Scholar - 32.F. Wang:
*Oxid. Met.*, 1997, vol. 48, pp. 215–24.CrossRefGoogle Scholar - 33.Z. Liu, W. Gao, K.L. Dahm, F. Wang:
*Acta Mater.*, 1998, vol. 46, pp. 1691–700.CrossRefGoogle Scholar - 34.S. Guan, W. Smeltzer:
*Oxid. Met.*, 1994, vol. 42, pp. 375–91.Google Scholar - 35.J. Töpfer, R. Dieckmann:
*Solid State Ionics*, 2010, vol. 181, pp. 479–88.CrossRefGoogle Scholar - 36.I. Burn, S. Neirman:
*J. Mater. Sci.*, 1982, vol. 17, pp. 3510–24.CrossRefGoogle Scholar