Metallurgical and Materials Transactions A

, Volume 45, Issue 11, pp 5114–5126 | Cite as

Effects of M23C6 on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7

Article

Abstract

The effects of M23C6 (M = Cr, Fe) on the high-temperature performance of the NiCrFe-7 welding rods and weld metals were studied by high-temperature tensile tests and microstructure analysis. M23C6 at the grain boundaries (GBs) has a cube-on-cube coherence with one grain in the NiCrFe-7 weld metals, and the adjacent M23C6 has the coherence relationship with the same grain. The grain with a coherent M23C6 has a Cr-depletion region. The number and size of M23C6 particles can be adjusted by heat treatment and alloying. There are two temperatures [TE1: 923 K to 1083 K (650 °C to 810 °C) and TE2: 1143 K to 1203 K (870 °C to 930 °C)] at which the GBs and grains of the NiCrFe-7 welding rod have equal strength during the high-temperature tensile test. When the temperatures are between TE1 and TE2, the strength of the GBs is lower than that of the grains, and the tensile fractures are intergranular. When the temperatures are below TE1 or over TE2, the strength of the GBs is higher than that of the grains, and the tensile fractures are dimples. M23C6 precipitates at the GBs, which deteriorates the ductility of the welding rods at temperature between TE1 and TE2. M23C6 aggravates ductility-dip-cracking (DDC) in the weld metals. The addition of Nb and Ti can form MX (M = Ti, Nb, X = C, N), fix C in grain, decrease the initial precipitation temperature of M23C6, and mitigate the precipitation of M23C6, which is helpful for minimizing DDC in the weld.

Notes

Acknowledgments

The authors are grateful for the financial support by the Key Research Program of the Chinese Academy of Sciences (Grant No. KGZD-EW-XXX-2). The authors are grateful to X. B. Hu and X. C. Liu for TEM study, to X. M. Luo for EBSD study, to W. C. Dong for the finite element modeling. The authors also acknowledge the assistance provided by China First Heavy Machinery Co. Ltd. in the welding process.

References

  1. 1.
    F. Huang, J. Q. Wang, E. H. Han and W. Ke: J. Mater. Sci. Technol., 2012, vol. 28, pp. 562-568.CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, J. Wang, E. H. Han and W. Ke: J. Mater. Sci. Technol., 2012, vol. 28, pp. 785-792.CrossRefGoogle Scholar
  3. 3.
    T. Y. Kuo and H. T. Lee: Mater. Sci. Eng. A, 2002, vol. 338, pp. 202-212.CrossRefGoogle Scholar
  4. 4.
    A. J. Ramirez and J. C. Lippold: Mater. Sci. Eng. A, 2004, vol. 380, pp. 259-271.CrossRefGoogle Scholar
  5. 5.
    A. J. Ramirez and J. C. Lippold: Mater. Sci. Eng. A, 2004, vol. 380, pp. 245-258.CrossRefGoogle Scholar
  6. 6.
    C. L. White, J. H. Schneibel and R. A. Padgett: Metall. Trans. A, 1983, vol. 14, pp. 595-610.CrossRefGoogle Scholar
  7. 7.
    E. Shapiro and G. Dieter: Metall. Trans., 1970, vol. 1, pp. 1711-1719.CrossRefGoogle Scholar
  8. 8.
    M. Arkoosh and N. Fiore: Metall. Trans., 1972, vol. 3, pp. 2235-2240.CrossRefGoogle Scholar
  9. 9.
    A.J. Ramirez and C.M. Garzon: Hot Cracking Phenomena in Welds II, 2nd ed., Springer, Berlin, 2008, pp. 427-453.CrossRefGoogle Scholar
  10. 10.
    E.A. Torres, F.G. Peternella, R. Caram, and A. J. Ramírez: In-situ Studies with Photons, Neutrons and Electrons Scattering, Springer, Berlin, 2010, pp. 27–39.CrossRefGoogle Scholar
  11. 11.
    R. Qin, Z. Duan, and G. He: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4661–70.Google Scholar
  12. 12.
    S.J. Norton: Master Thesis, Ohio State University, 2003.Google Scholar
  13. 13.
    J.S. Unfried, E.A. Torres, and A.J. Ramirez: Hot Cracking Phenomena in Welds III, 3rd ed., Springer, Berlin, 2011, pp. 295–315.CrossRefGoogle Scholar
  14. 14.
    W. Wu, P. Y. Chen and H. Jiang: China Weld. J., 2009, vol. 2, pp. 61-64.Google Scholar
  15. 15.
    K. Nishimoto, K. Saida, H. Okauchi and K. Ohta: Sci. Technol. Weld. Joining, 2006, vol. 11, pp. 471-479.CrossRefGoogle Scholar
  16. 16.
    K. Saida, Y. Nomoto, H. Okauchi, H. Ogiwara and K. Nishimoto: Sci. Technol. Weld. Joining, 2012, vol. 17, pp. 1-8.CrossRefGoogle Scholar
  17. 17.
    K. Saida, A. Taniguchi, H. Okauchi, H. Ogiwara and K. Nishimoto: Sci. Technol. Weld. Joining, 2011, vol. 16, pp. 553-560.CrossRefGoogle Scholar
  18. 18.
    T.E. Capobianco and M.E. Hanson: No. LM-05K074, Knolls Atomic Power Laboratory (KAPL), Niskayuna, NY, 2005.Google Scholar
  19. 19.
    D. J. Lee, Y. S. Kim, Y. T. Shin, E. C. Jeon, S. H. Lee, H. J. Lee, S. K. Lee, J. H. Lee and H. W. Lee: Met. Mater. Int., 2010, vol. 16, pp. 813-817.CrossRefGoogle Scholar
  20. 20.
    A.J. Ramirez and J.C. Lippold: Hot Cracking Phenomena in Welds, 1st ed., Springer, Berlin, 2005, pp. 19–41.CrossRefGoogle Scholar
  21. 21.
    N.E. Nissley and J.C. Lippold: Trends in Welding Research, Proceedings, 2006, pp. 327–32.Google Scholar
  22. 22.
    M. G. Collins, A. J. Ramirez and J. C. Lippold: Weld. J., 2004, vol. 83, pp. 39S-49S.Google Scholar
  23. 23.
    G. A. Young, T. E. Capobianco, M. A. Penik, B. W. Morris and J. J. McGee: Weld. J., 2008, vol. 87, pp. 31s-43s.Google Scholar
  24. 24.
    Z. Lei, R. Chellali, R. Schlesiger, D. Baither and G. Schmitz: Scr. Mater., 2011, vol. 65, pp. 428-31.CrossRefGoogle Scholar
  25. 25.
    Y. H. Yang, J. J. Yu, X. F. Sun, T. Jin, H. R. Guan and Z. Q. Hu: Mater. Charact., 2012, vol. 66, pp. 30-37.CrossRefGoogle Scholar
  26. 26.
    U. Krupp, W. M. Kane, C. Laird and C. J. McMahon: Mater. Sci. Eng. A, 2004, vol. 387, pp. 409-413.CrossRefGoogle Scholar
  27. 27.
    V. Laporte and A. Mortensen: Int. Mater. Rev., 2009, vol. 54, pp. 94-116.CrossRefGoogle Scholar
  28. 28.
    S. Fujiwara and K. Abiko: Le Journal de Physique IV, 1995, vol. 5, pp. 295-300.Google Scholar
  29. 29.
    S. Onaka, M. Kato and R. Tanaka: J. Japan Inst. Metals, 1986, vol. 50, p. 141.Google Scholar
  30. 30.
    N. E. Nissley and J. C. Lippold: Weld. J., 2008, vol. 87, pp. 257s-264s.Google Scholar
  31. 31.
    N. E. Nissley and J. C. Lippold: Weld. J., 2009, vol. 88, pp. 131s-140s.Google Scholar
  32. 32.
    F. F. Noecker and J. N. DuPont: Weld. J., 2009, vol. 88, pp. 62s-77s.Google Scholar
  33. 33.
    X. C. Liu, H. W. Zhang and K. Lu: Science, 2013, vol. 342, pp. 337-340.CrossRefGoogle Scholar
  34. 34.
    Q. Liu: Ultramicroscopy, 1995, vol. 60, pp. 81-89.CrossRefGoogle Scholar
  35. 35.
    K. Stiller: Surf. Sci., 1992, vol. 266, pp. 402-408.CrossRefGoogle Scholar
  36. 36.
    H. Li, S. Xia, B. X. Zhou, W. J. Chen and C. L. Hu: J. Nucl. Mater., 2010, vol. 399, pp. 108-113.CrossRefGoogle Scholar
  37. 37.
    Y. S. Lim, J. S. Kim, H. P. Kim and H. D. Cho: J. Nucl. Mater., 2004, vol. 335, pp. 108-114.CrossRefGoogle Scholar
  38. 38.
    K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J. S. Barnard and P. A. Midgley: Scr. Mater., 2011, vol. 65, pp. 509-512.CrossRefGoogle Scholar
  39. 39.
    H. U. Hong and S. W. Nam: Mater. Sci. Eng. A, 2002, vol. 332, pp. 255-261.CrossRefGoogle Scholar
  40. 40.
    E. A. Trillo and L. E. Murr: J. Mater. Sci., 1998, vol. 33, pp. 1263-1271.CrossRefGoogle Scholar
  41. 41.
    M. A. Mangan, M. V. Kral and G. Spanos: Acta Mater., 1999, vol. 47, pp. 4263-4274.CrossRefGoogle Scholar
  42. 42.
    D. Tytko, P. P. Choi, J. Klower, A. Kostka, G. Inden and D. Raabe: Acta Mater., 2012, vol. 60, pp. 1731-1740.CrossRefGoogle Scholar
  43. 43.
    R. Hu, G. H. Bai, J. S. Li, J. Q. Zhang, T. B. Zhang and H. Z. Fu: Mater. Sci. Eng. A, 2012, vol. 548, pp. 83-88.CrossRefGoogle Scholar
  44. 44.
    L. Zheng, S. Jiao, J. Dong and M. Zhang: J. Mech. Eng., 2010, vol. 46, pp. 54-59.Google Scholar
  45. 45.
    T. Angeliu and G. Was: Metall. Trans. A, 1990, vol. 21A, pp. 2097-2107.CrossRefGoogle Scholar
  46. 46.
    M. Thuvander and K. Stiller: Mater. Sci. Eng. A, 2000, vol. 281, pp. 96-103.CrossRefGoogle Scholar
  47. 47.
    W. L. Mo, S. P. Lu, D. Z. Li and Y. Y. Li: Mater. Sci. Eng. A, 2013, vol. 582, pp. 326-337.CrossRefGoogle Scholar
  48. 48.
    N. E. Nissley and J. C. Lippold: Weld. J., 2003, vol. 82, pp. 355s-364s.Google Scholar
  49. 49.
    P. Venkiteswaran, M. Bright and D. Taplin: Mater. Sci. Eng., 1973, vol. 11, pp. 255-268.CrossRefGoogle Scholar
  50. 50.
    W. L. Mo, S. P. Lu, D. Z. Li and Y. Y. Li: J. Mater. Sci. Technol., 2013, vol. 29, pp. 458-466.CrossRefGoogle Scholar
  51. 51.
    H. Miura, S. Watanabe, T. Sakai and M. Kato: Interface Sci., 1997, vol. 4, pp. 329-338.Google Scholar
  52. 52.
    M. G. Collins and J. C. Lippold: Weld. J., 2003, vol. 82, pp. 288s-295s.Google Scholar
  53. 53.
    M. G. Collins, A. J. Ramirez and J. C. Lippold: Weld. J., 2003, vol. 82, pp. 348S-354S.Google Scholar
  54. 54.
    J. Q. Chen, H. Lu, C. Yu, J. M. Chen and M. L. Zhang: Sci. Technol. Weld. Joining, 2013, vol. 18, pp. 346-353.CrossRefGoogle Scholar
  55. 55.
    B. C. Peng, H. X. Zhang, J. Hong, J. Q. Gao, H. Q. Zhang, Q. J. Wang and J. F. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3625-3629.CrossRefGoogle Scholar
  56. 56.
    X. Li: Master Thesis, Graduate University of Chinese Academy of Sciences, 2012.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangP.R. China

Personalised recommendations