Metallurgical and Materials Transactions A

, Volume 46, Issue 2, pp 557–565 | Cite as

Mechanical Properties and Fracture Behavior of Directionally Solidified NiAl-V Eutectic Composites

  • Srdjan MilenkovicEmail author
  • Rubens Caram
Symposium: Materials for High-Temperature Applications: Next Generation Superalloys and Beyond


Directional solidification of eutectic alloys has been recognized as promising technique for producing in situ composite materials exhibiting balance of properties. Therefore, an in situ NiAl-V eutectic composite has been successfully directionally solidified using Bridgman technique. The mechanical behavior of the composite including fracture resistance, microhardness, and compressive properties at room and elevated temperatures was investigated. Damage evolution and fracture characteristics were also discussed. The obtained results indicate that the NiAl-V eutectic retains high yield strength up to 1073 K (800 °C), above which there is a rapid decrease in strength. Its yield strength is higher than that of binary NiAl and most of the NiAl-based eutectics. The exhibited fracture toughness of 28.5 MPa√m is the highest of all other NiAl-based systems investigated so far. The material exhibited brittle fracture behavior of transgranular type and all observations pointed out that the main fracture micromechanism was cleavage.


Fracture Toughness NiAl Molybdenum Disulfide Eutectic Alloy Creep Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding of the Project NECTAR (PCIG10-GA-2011-303409) by the Marie Curie Actions Grant FP7-PEOPLE-2011-CIG program is gratefully acknowledged. SM acknowledges the Ramon y Cajal fellowships from the Spanish Ministry of Economy and Competitiveness. The financial support from the São Paulo State Research Foundation (FAPESP, Brazil) is acknowledged.


  1. 1.
    D.B. Miracle: Acta Metall. Mater., 1993, Vol. 41, pp. 649–84.CrossRefGoogle Scholar
  2. 2.
    R.D. Noebe, R.R. Bowman, M. Nathal: Int. Mater. Rev., 1993, Vol. 38, pp.193–231.CrossRefGoogle Scholar
  3. 3.
    A. Misra and R. Gibala: Metall Mater. Trans. A, 1997, Vol. 28A, pp. 795–807.Google Scholar
  4. 4.
    M.G. Mendiratta, J.J. Levandowski, D.M. Dimiduk: Metall. Trans. A, 1991, Vol. 22A, pp. 1573–83.CrossRefGoogle Scholar
  5. 5.
    G. Frommeyer, R. Rosenkranz, C. Ludecke: Zeit. Metallkd., 1991, Vol. 81, pp. 307–13.Google Scholar
  6. 6.
    J.D. Whittenberger, R.D. Noebe, D.R. Johnson, B.F. Oliver: Intermetallics, 1997, Vol. 5, pp. 173–83.CrossRefGoogle Scholar
  7. 7.
    D.T. Jiang and J.T. Guo. Mater. Sci. Eng. A 225 (1998), p. 154.CrossRefGoogle Scholar
  8. 8.
    J.T. Guo, C.Y. Cui, Y.X. Chen, D.X. Li and H.Q. Ye. Intermetallics, 2001, Vol. 9, pp. 287–97.CrossRefGoogle Scholar
  9. 9.
    F.E. Heredia, M.Y. He, G.E. Lucas, A.G. Evans and H.E. Dève. Acta Metall. Mater., 1993, Vol. 41, pp. 505–11.CrossRefGoogle Scholar
  10. 10.
    P.R. Subramanian, M.G. Mendiratta and D.B. Miracle. Metall. Mater. Trans. A 25A (1994), p. 2769-81.CrossRefGoogle Scholar
  11. 11.
    A. Misra, R. Gibala and R.D. Noebe: Intermetallics, 2001, Vol. 9, pp. 971–8.CrossRefGoogle Scholar
  12. 12.
    C.Y. Cui, J.T. Guo, Y.H. Qi, H.Q. Ye. Mater. Sci. Eng. A, 2004, Vol. 385, pp. 359–66.CrossRefGoogle Scholar
  13. 13.
    H. Bei and E.P. George. Acta Mater., 2005, Vol. 53, pp. 69–77.CrossRefGoogle Scholar
  14. 14.
    B. Zeumert, G. Sauthoff. Intermetallics, 1997, Vol. 5, pp. 563–77.CrossRefGoogle Scholar
  15. 15.
    P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, R. Caram. J. Cryst. Growth, 2005, Vol. 275, pp. 147–52.CrossRefGoogle Scholar
  16. 16.
    P.W. Pellegrini, J.J. Huta., J. Cryst. Growth, 1977, Vol. 42, pp. 536–39.CrossRefGoogle Scholar
  17. 17.
    J.D. Cotton, M.J. Kaufman: Scripta Metall. Mater., 1991, Vol. 25, pp. 1827–36.CrossRefGoogle Scholar
  18. 18.
    S.M. Joslin, X.F. Chen, B.F. Oliver, R.D. Noebe: Mater. Sci. Eng. A, 1995, Vol. 196, pp. 9–18.CrossRefGoogle Scholar
  19. 19.
    S. Milenkovic, A.A. Coelho, R. Caram: J. Cryst. Growth, 2000, Vol. 211, pp. 485–90.CrossRefGoogle Scholar
  20. 20.
    S. Milenkovic, R. Caram: Mater. Lett., 2002, Vol. 55, pp. 126–31.CrossRefGoogle Scholar
  21. 21.
    S. Milenkovic, R. Caram: J. Mater. Proc. Technol., 2003, Vol. 143–144, pp. 629–35.CrossRefGoogle Scholar
  22. 22.
    J.D. Hunt, K.A. Jackson, Trans. Met. Soc. AIME, 1966, Vol. 236, pp. 843–52.Google Scholar
  23. 23.
    J.D. Hunt, J.P. Chilton, J. Inst. Met., 1962, Vol. 91, pp. 338–45.Google Scholar
  24. 24.
    R. Darolia, J. Met., 1991, Vol.43, pp.44–49.Google Scholar
  25. 25.
    J.L. Walter and H.E. Cline: Metall. Trans., 1970, vol. 1, pp. 1221–29.Google Scholar
  26. 26.
    G. Frommeyer and R. Rablbauer, MRS Proc., 2002, vol. 753, BB4.6.Google Scholar
  27. 27.
    D.R. Johnson, S.M. Joslin, B.F. Oliver, R.D. Noebe, J.D. Whittenberger, Intermetallics, Vol. 3, pp. 99–113, 1995.CrossRefGoogle Scholar
  28. 28.
    P.R. Subramanian, M.G. Mendiratta, D.B. Miracle, and D.M. Dimiduk: in MRS Symposium on Intermetallic Matrix Composites II, 1990, vol. 194, pp. 147–54.Google Scholar
  29. 29.
    Annual Book of ASTM Standards: “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”: E-399-90, ASTM, Philadelphia, PA, 1991, vol. 03.01, p. 485.Google Scholar
  30. 30.
    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Solids, 4th ed. New York: Wiley, 1996, pp. 164-201.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Solidification Processing and Engineering GroupIMDEA Materials InstituteGetafeSpain
  2. 2.Department of Materials EngineeringState University of CampinasCampinasBrazil
  3. 3.FEM/UNICAMPCampinasBrazil

Personalised recommendations