Metallurgical and Materials Transactions A

, Volume 45, Issue 11, pp 4780–4785 | Cite as

Microstructural Evolution of Long-Period Stacking Ordered Structures in Mg97Y2Zn1 Alloys Examined by In-Situ Small-Angle X-ray Scattering

  • Hiroshi OkudaEmail author
  • Toshiki Horiuchi
  • Shoki Hifumi
  • Michiaki Yamasaki
  • Yoshihito Kawamura
  • Shigeru Kimura
Symposium: Neutron and X-Ray Studies of Advanced Materials VII


Development and stability of synchronized long-period stacking ordered (LPSO) structures in Mg97Y2Zn1 alloy were examined by synchrotron-radiation small- and wide-angle scattering/diffraction measurements. The main LPSO structure in the as-cast polycrystalline ingot was 18R, and 14H structure grew at the cost of 18R during annealing. The in-plane peak position increased for longer annealing times in isothermal annealing and also at higher temperatures during in situ heating measurements, and it was interpreted by a composition of peaks corresponding to several sites. The experimental instability temperatures obtained by in situ measurements for in-plane ordering, 18R, and 14H structures agreed within experimental resolution.


Increase Annealing Time LPSO Phase LPSO Structure Mg85Y9Zn6 Alloy Kinetic Phase Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was supported by a grant-in-aid for scientific research on innovative areas, “Synchronized Long-Period Stacking Ordered Structure,” from the Ministry of Education, Science, Sport and Culture, Japan (Grant No. 23109005). Small-angle scattering measurements were made under Proposal Nos. 2012G118 at Photon Factory, KEK, and 2013A1447 and 2013B1383 at SPring-8.


  1. 1.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Mater. Trans., 2001, vol. 42. pp. 1172–76.CrossRefGoogle Scholar
  2. 2.
    A. Inoue, Y. Kawamura, M. Matushita, and J. Koike: J. Mater. Res., 2001, vol. 16, pp. 1894–1900.CrossRefGoogle Scholar
  3. 3.
    M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, and M. Nishida: Mater. Sci. Eng., 2005, vol. 393A, pp. 269–74.CrossRefGoogle Scholar
  4. 4.
    D. Egusa and E. Abe: Acta Mater., 2012, vol. 60, pp. 166–71.CrossRefGoogle Scholar
  5. 5.
    H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 7287–99.CrossRefGoogle Scholar
  6. 6.
    K. Hagihara, N. Yokotani, and Y. Umakoshi: Intermetallics, 2010, vol. 18, pp. 267–76.CrossRefGoogle Scholar
  7. 7.
    X.H. Shao, Z.Q. Yang, X.L Ma: Acta Mater., 2010, vol. 58, pp. 4760–71.CrossRefGoogle Scholar
  8. 8.
    T. Itoi, S. Semiya, Y. Kawamura, and M. Hirohashi: Scripta Mater., 2004, vol. 51, pp. 107–11.CrossRefGoogle Scholar
  9. 9.
    M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 3646–58.CrossRefGoogle Scholar
  10. 10.
    Z.P. Luo and S.Q. Zhang: J. Mater. Sci. Lett., 2000, vol. 19, pp. 813–15.CrossRefGoogle Scholar
  11. 11.
    E. Abe, A. Ono, T. Itoi, M. Yamasaki, and Y. Kawamura: Philos. Mag. Lett., 2011. vol. 91, pp. 690–96.CrossRefGoogle Scholar
  12. 12.
    H. Okuda, T. Horiuchi, T. Tsukamoto, S. Ochiai, M. Yamasaki, and Y. Kawamura: Scripta Mater., 2013, vol. 68, pp. 575–78.CrossRefGoogle Scholar
  13. 13.
    Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater., 2010, vol. 58, pp. 2936–47.CrossRefGoogle Scholar
  14. 14.
    S. Kurokawa, A. Yamaguchi, and A. Sakai: Mater. Trans., 2013, vol. 54, pp. 1073–76.CrossRefGoogle Scholar
  15. 15.
    H. Okuda, T. Horiuchi, T. Maruyama, M. Yamasaki, Y. Kawamura, and K. Hagihara: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 147–51.CrossRefGoogle Scholar
  16. 16.
    H. Okuda, T. Horiuchi, M. Yamasaki, Y. Kawamura, and S. Kohara: Scripta Mater., 2014, vol. 75, pp. 66–69.CrossRefGoogle Scholar
  17. 17.
    T. Kiguchi, Y. Ninomiya, K. Shimmi, K. Sato, and T. Konno: Mater.Trans., 2013, vol. 54, pp. 668–74.CrossRefGoogle Scholar
  18. 18.
    J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, and R. Schimdt-Fetzer: Acta Mater., 2012, vol. 60, pp. 5948–55.CrossRefGoogle Scholar
  19. 19.
    G. Shao, V. Varsani, and Z. Fan: CALPHAD, 2006, vol. 30, pp. 286–95.CrossRefGoogle Scholar
  20. 20.
    S. Minamoto, S. Nomoto, A. Hamaya, T. Horiuchi, and S. Miura: ISIJ Int., 2010, vol. 50, pp. 1914–19.CrossRefGoogle Scholar
  21. 21.
    H. Kimizuka, N. Fronzi, and S. Ogata: Scripta Mater., 2013, vol. 69, pp. 594–97.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Hiroshi Okuda
    • 1
    Email author
  • Toshiki Horiuchi
    • 1
  • Shoki Hifumi
    • 1
  • Michiaki Yamasaki
    • 2
  • Yoshihito Kawamura
    • 2
  • Shigeru Kimura
    • 3
  1. 1.Department of Materials Science and Engineering, Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of Materials Science and EngineeringKumamoto UniversityKumamotoJapan
  3. 3.Japan Synchrotron Radiation Research Institute, Synchrotron Radiation Instrumentation/measurements (JASRI)SPring-8SayoJapan

Personalised recommendations