Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 10, pp 4484–4498 | Cite as

Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

  • Lawrence Cho
  • Myung Soo Kim
  • Young Ha Kim
  • Bruno C. De Cooman
Article

Abstract

The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (−60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 (x > 1.5) and Si-rich xMnO·SiO2 (x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

Keywords

Trip Steel Intercritical Annealing Reactive Wetting Surface Active Element Intercritical Annealing Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the support of POSCO. The suggestions of Dr. Kwang Soo Shin of RIST (Pohang, Korea) on the interpretation of the results reported in the manuscript are highly appreciated.

References

  1. 1.
    Y.F. Gong, H.S. Kim, B.C. De Cooman: ISIJ international, 2008, vol. 48, pp. 1745-51.CrossRefGoogle Scholar
  2. 2.
    Y.F. Gong, H.S. Kim, B.C. De Cooman: ISIJ international, 2009, vol. 49, pp. 557-63.CrossRefGoogle Scholar
  3. 3.
    L. Cho, S. Lee, M. Kim, Y. Kim, B.C. De Cooman: Metallurgical and Materials Transactions A, 2013, vol. 44A, pp. 362-71.CrossRefGoogle Scholar
  4. 4.
    K.K. Wang, C.W. Hsu, L. Chang, D. Gan, K.C. Yang: Applied surface science, 2013, vol. 285, pp. 458-68.CrossRefGoogle Scholar
  5. 5.
    I. Cvijović, I. Parezanović, M. Spiegel: Corrosion Science, 2006, vol. 48, pp. 980-93.CrossRefGoogle Scholar
  6. 6.
    H. Liu, F. Li, W. Shi, S. Swaminathan, Y. He, M. Rohwerder, L. Li: Surface and Coatings Technology, 2012, vol. 206, pp. 3428-36.CrossRefGoogle Scholar
  7. 7.
    E.M. Bellhouse, J.R. McDermid: Metallurgical and Materials Transactions A, 2010, vol. 41, pp. 1539-53.CrossRefGoogle Scholar
  8. 8.
    L. Cho, M.S. Kim, Y.H. Kim, S.J. Lee, B.C. De Cooman: Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH 2011), Genova, Italy, 2011, Associazione Italiana di Metallurgia, pp. 145–52.Google Scholar
  9. 9.
    R. Nakanishi, H. Irie, M. Nakamura, K. Okamoto, and M. Shimizu: European Patent, EP 1829 983 (A1), 2007.Google Scholar
  10. 10.
    L. Bordignon, X.V. Eynde, R. Franssen: Revue de Métallurgie, 2004, vol. 101, pp. 559-68.CrossRefGoogle Scholar
  11. 11.
    M. Blumenau, M. Norden, F. Friedel, K. Peters: Surface and Coatings Technology, 2011, vol. 206, pp. 559-67.CrossRefGoogle Scholar
  12. 12.
    Y.F. Gong, B.C. De Cooman: ISIJ international, 2011, vol. 51, pp. 630-37.CrossRefGoogle Scholar
  13. 13.
    Y.I. Choi, W.J. Beom, C.J. Park, D. Paik, M.H. Hong: Metallurgical and Materials Transactions A, 2010, vol. 41, pp. 3379-85.CrossRefGoogle Scholar
  14. 14.
    R. Sanguanmoo, E. Nisaratanaporn, Y. Boonyongmaneerat: Corrosion Science 2011, vol. 53, pp. 122-26.CrossRefGoogle Scholar
  15. 15.
    T. Matsumoto: CAMP-ISIJ, 1991, vol. 4, pp. 1632.Google Scholar
  16. 16.
    Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier, S. Sridhar: Metallurgical and Materials Transactions B, 2009, vol. 40, pp. 567-84.CrossRefGoogle Scholar
  17. 17.
    E. Clauberg, C. Uebing, H. Grabke: Applied surface science, 1999, vol. 143, pp. 206-14.CrossRefGoogle Scholar
  18. 18.
    G. Lyudkovsky: United States Patent, No. 4,421,574, 1983.Google Scholar
  19. 19.
    A. Ruck, D. Monceau, H.J. Grabke: Steel research, 1996, vol. 67, pp. 240-46.Google Scholar
  20. 20.
    M. Seah: Acta Metallurgica, 1980, vol. 28, pp. 955-62.CrossRefGoogle Scholar
  21. 21.
    N. Tsai, G. Pound, F.F. Abraham: Journal of Catalysis, 1977, vol. 50, pp. 200-02.CrossRefGoogle Scholar
  22. 22.
    D.R. Lide: CRC Handbook of chemistry and physics, 86th ed., CRC Press, Boca Raton, 2005.Google Scholar
  23. 23.
    H.G. Lee: Chemical Thermodynamics for Metals and Materials, Imperial College Press, London, 1999.CrossRefGoogle Scholar
  24. 24.
    Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, S. Yamaguchi: ISIJ international, 2009, vol. 49, pp. 564-73.CrossRefGoogle Scholar
  25. 25.
    T. Iung, O. Faral, M. Faral, M. Babbit, and C. Issartel: United States Patent 6328826 B1, 2001.Google Scholar
  26. 26.
    K. Takashima, Y. Toji, and K. Hasegawa: United States Patent 20130340898 A1, 2013.Google Scholar
  27. 27.
    D. Melford: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1980, vol. 295, pp. 89-103.CrossRefGoogle Scholar
  28. 28.
    D. Huin, P. Flauder, J.B. Leblond: Oxid Met, 2005, vol. 64, pp. 131-67.CrossRefGoogle Scholar
  29. 29.
    S. Alibeigi, R. Kavitha, R.J. Meguerian, J.R. McDermid: Acta Mater, 2011, vol. 59, pp. 3537-49.CrossRefGoogle Scholar
  30. 30.
    D. Sain, G. Belton: Metallurgical Transactions B, 1978, vol. 9, pp. 403-07.CrossRefGoogle Scholar
  31. 31.
    H.J. Grabke: Kovine zlitine tehnologije, 1996, vol. 30, pp. 483–95.Google Scholar
  32. 32.
    H. Grabke, R. Dennert, B. Wagemann: Oxid Met, 1997, vol. 47, pp. 495-506.CrossRefGoogle Scholar
  33. 33.
    Y.Y. Zhang, Y.Y. Zhang, F.H. Yang, Z.T. Zhang: Journal of Iron and Steel Research, International, 2013, vol. 20, pp. 39-56.CrossRefGoogle Scholar
  34. 34.
    N. Gao, D.Y.H. Liu, N. Tang, R.B. Park, and M.S. Kim: Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH 2011), Genova, Italy, 2011, Associazione Italiana di Metallurgia, pp. 123–30.Google Scholar
  35. 35.
    R. Kavitha, J.R. McDermid: Surface and Coatings Technology, 2012, vol. 212, pp. 152-58.CrossRefGoogle Scholar
  36. 36.
    N. Kaiser: Applied optics, 2002, vol. 41, pp. 3053-60.CrossRefGoogle Scholar
  37. 37.
    F. Matsuno, S. Nishikida: Tetsu-to-Hagane, 1982, vol. 68, pp. 301 - 08.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Lawrence Cho
    • 1
  • Myung Soo Kim
    • 2
  • Young Ha Kim
    • 2
  • Bruno C. De Cooman
    • 1
    • 3
  1. 1.Materials Design Laboratory, Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangSouth Korea
  2. 2.POSCO Technical Research LaboratoriesGwangyangSouth Korea
  3. 3.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations