Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 10, pp 4561–4571 | Cite as

High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

  • Benedikt Albert
  • Rainer Völkl
  • Uwe Glatzel
Article

Abstract

For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

Keywords

Oxide Layer Oxide Scale Oxidation Behavior Depletion Zone Cast Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Bundesministerium für Wirtschaft und Technologie (BMWi) for funding as well as MTU Aero Engines and Schunk Sintermetalltechnik for research cooperation via the LuFo IV/2 research program.

References

  1. 1.
    R.M. German, A. Bose; Injection Molding of Metals and Ceramics, MPIF, Princeton, NJ, 1997.Google Scholar
  2. 2.
    R.M. German, Metal Injection Molding, A Comprehensive MIM Design Guide, MPIF, Princeton, NJ, 2011.Google Scholar
  3. 3.
    Wohlfromm, H.; Ribbens, A.; ter Maat, J.; Blömacher, M.; Proc. Euro PM 2003; 2003, 207-15.Google Scholar
  4. 4.
    Kern, A.; Blömacher, M.; ter Maat, J. Thom, A.; Met. Powder Rep., 66; 2011, 22-26.CrossRefGoogle Scholar
  5. 5.
    Bose, A.; Valencia, J.J.; Spirko, J.; Schmees, R.; Adv. Powder Metal. Part. Mater., 3; 1997, 18.99-18.112.Google Scholar
  6. 6.
    J.J. Valencia, T. McCabe, K. Hens, J.O. Hansen, and A. Bose: in Superalloys 718, 625, 706 and various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 935–45.Google Scholar
  7. 7.
    Lange, E.; Poniatkowski, M.; Z. Werkst. 18, 1987, 337-44 .CrossRefGoogle Scholar
  8. 8.
    Nobrega, B.N.; Ristow, W.Jr.; Machado, R.; Powder Met., 51, 2008, 107-10.CrossRefGoogle Scholar
  9. 9.
    Davies, P.A.; Dunstan, G.R.; Howells, R.I.L.; Hayward, A.C.; Met. Powder Rep., 59 2004, 14-19.CrossRefGoogle Scholar
  10. 10.
    Diehl, W.; Buchkremer, H.; Kaiser, H.; Stöver, D.; Werkst. Innov., 1; 1988; 48-51.Google Scholar
  11. 11.
    B. Klöden, U. Jehring, T. Weißgärber, and B. Kieback: Proc. World PM 2010, Florence, 2010, vol. 4, pp. 413–20.Google Scholar
  12. 12.
    Ott, E.A.; Peretti, M.W.; JOM, 64, 2012, 252-56.CrossRefGoogle Scholar
  13. 13.
    Salk, N.; PIM Int., 5; 2011; 61-64.Google Scholar
  14. 14.
    Miura, H.; Ikeda, H.; Iwahashi, T.; Osada, T.; PIM Int., 4; 2010; 68-70.Google Scholar
  15. 15.
    J.L. Smialek and G.H. Meier: in Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., Wiley, New York, 1987, pp. 293–325.Google Scholar
  16. 16.
    Giggins, C.S.; Pettit, F.S.; J. Electrochem. Soc., 118, 1971, 1782-90.CrossRefGoogle Scholar
  17. 17.
    Wagner, C.; J. Electrochem. Soc., 103, 1956, 627-33.CrossRefGoogle Scholar
  18. 18.
    Das, D.K.; Singh, V.; Joshi, S.V.; Mater. Sci. Technol., 19, 2003, 695-707.CrossRefGoogle Scholar
  19. 19.
    Christ H.J., Berchthold L., Sockel H.G. Oxid. Met., 26; 1986; 45-76.CrossRefGoogle Scholar
  20. 20.
    C.A. Barrett, G.J. Santoro, and C.E. Lowell: “Isothermal and Cyclic Oxidation at 1000 °C and 1100 °C of Four Nickel-base alloys: NASA-TRW VIA, B-1900, 713C, and 738X”, NASA Technical Note, TN D-7484, 1973.Google Scholar
  21. 21.
    Mahapatra, R.N.; Varma, S.K.; Lei, C.; Agarwala, V.V.; Oxid Met., 62; 2004; 93-102.CrossRefGoogle Scholar
  22. 22.
    Mahapatra R.N., Varma S.K., Lei C.S.; Oxid. Met., 66; 2006; 127-135.CrossRefGoogle Scholar
  23. 23.
    Wei H, Hou GC, Sun XF, Guan HR, Hu ZQ (2007) Oxid. Met., 68:149-63.CrossRefGoogle Scholar
  24. 24.
    Zhang XJ. Wang S.Y. Gesmundo F.; Niu Y. Oxid. Met, 65; 2006 151-65.CrossRefGoogle Scholar
  25. 25.
    G.C. Fryburg, F.J. Kohl, and C.A. Stearns: “Oxidation in Oxygen at 900 °C and 1000 °C of four Nickel-Base Cast Superalloys: Nasa-TRW VIA, B-1900, Alloy 713C, and IN-738”, NASA Technical Note, TN D-8388, 1977.Google Scholar
  26. 26.
    German Material Specification WL 2.4671, Beuth, Berlin, 1984.Google Scholar
  27. 27.
    K. Harris, G.L. Erickson, and R.E. Schwer: Proc. Fifth Int. Symp. Superalloys, Metallurgical Society AIME, Warrendale, PA, 1984, pp. 221–30.Google Scholar
  28. 28.
    Brunner M, Bensch M, Völkl R, Affeldt E, Glatzel U (2012) Mater. Sci. Eng. A 550, 254-62.CrossRefGoogle Scholar
  29. 29.
    Bensch, M.; Preußner, J.; Hüttner, R.; Obigodi, G.; Virtanen, S.; Gabel, J.; Glatzel, U.; Acta Mater., 58, 2010, 1607-17.CrossRefGoogle Scholar
  30. 30.
    Gesmundo F, Gleeson B (1995) Oxid. Met. 44, 211-37.CrossRefGoogle Scholar
  31. 31.
    Bensch, M.; Sato, A.; Warnken, N.; Affeldt, E.; Reed, R.C.; Glatzel, U.; Acta Mater., 60, 2012, 5468-80.CrossRefGoogle Scholar
  32. 32.
    Stott F.H., Wood G.C., Stringer J. Oxid. Met. 44, 1995, 113-45.CrossRefGoogle Scholar
  33. 33.
    Smith MA, Frazier WE, Pregger BA (1995) Mater. Sci. Eng. A 203:388-98.CrossRefGoogle Scholar
  34. 34.
    Smeggil JG, Funkenbush AW, Bornstein NS (1986) Metall. Trans. A 17:923-32.CrossRefGoogle Scholar
  35. 35.
    Smeggil, J.G.; Bornstein, N.S.; DeCrescente, Oxid. Met. 30, 1988, 259-66.CrossRefGoogle Scholar
  36. 36.
    Hou, P.Y.; Stringer, J.; Oxid. Met; 38, 1992, 323-45.CrossRefGoogle Scholar
  37. 37.
    Lees, D.G.; Oxid. Met.; 27, 1987, 75-81.CrossRefGoogle Scholar
  38. 38.
    Smialek, J.L.; Metall. Trans. A; 22; 1991 739-52.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Metals and AlloysUniversity of BayreuthBayreuthGermany
  2. 2.MTU Aero EnginesMunichGermany

Personalised recommendations