Metallurgical and Materials Transactions A

, Volume 45, Issue 10, pp 4411–4422 | Cite as

Influence of the Tool Shoulder Contact Conditions on the Material Flow During Friction Stir Welding

  • Haley R. Doude
  • Judy A. Schneider
  • Arthur C. NunesJr.


Friction stir welding (FSWing) is a solid-state joining process of special interest in joining alloys that are traditionally difficult to fusion weld. In order to optimize the process, various numeric modeling approaches have been pursued. Of importance to furthering modeling efforts is a better understanding of the contact conditions between the workpiece and the weld tool. Both theoretical and experimental studies indicate the contact conditions between the workpiece and weld tool are unknown, possibly varying during the FSW process. To provide insight into the contact conditions, this study characterizes the material flow in the FSW nugget by embedding a lead (Pb) wire that melted at the FSWing temperature of aluminum alloy 2195. The Pb trace provided evidence of changes in material flow characteristics which were attributed to changes in the contact conditions between the weld tool and workpiece, as driven by temperature, as the tool travels the length of a weld seam.



The authors [HRD, JAS] acknowledge the funding support provided by the NASA Faculty Fellowship Program and a NASA GSRP Fellowship [HRD].


  1. 1.
    W.M. Thomas, E.D. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.9, 1991.Google Scholar
  2. 2.
    A.C. Nunes, Jr.: Proc. Aluminum, TMS International, Materials Park, OH, 2001, pp. 235–48.Google Scholar
  3. 3.
    J.A Schneider, A.C. Nunes, Jr.: Metall. Mater. Trans. B, 2004. vol. 35B, pp. 777-83.CrossRefGoogle Scholar
  4. 4.
    K. Colligan (1999) Weld. J. 78(7), pp. 229-37.Google Scholar
  5. 5.
    T.U. Seidel, A.P. Reynolds: Sci. Technol. Weld. Join., 2003, vol. 8, no. 3, pp. 175-83.CrossRefGoogle Scholar
  6. 6.
    M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes: Mater. Charact., 2003, vol. 49, pp. 95–101.CrossRefGoogle Scholar
  7. 7.
    Z.W. Chen, T. Pasang, Y. Qi: Mater. Sci. Eng. A, 2008, vol. 474, pp. 312–16.CrossRefGoogle Scholar
  8. 8.
    A.P. Reynolds: Scripta Mater., 2008, vol. 58, pp. 338–42.CrossRefGoogle Scholar
  9. 9.
    Y.H. Zhao, S.B. Lin, F.X. Qu, L. Wu: Mater. Sci. Technol., 2006, vol. 22, pp. 45–50.CrossRefGoogle Scholar
  10. 10.
    K. Kumar, S.V. Kailas: Mater. Sci. Eng. A, 2008, vol. 485, pp. 367–74.CrossRefGoogle Scholar
  11. 11.
    B. London, M. Mahoney, W. Bingel, M. Calabrese, R.H. Bossi, and D. Waldron: Friction Stir Welding Processing II, TMS International, Materials Park, OH, 2003, pp. 3–12.Google Scholar
  12. 12.
    F. Gratecap, M. Girard, S. Marya, G. Racineux: Int. J. Mater. Form, 2011, vol. 5, pp. 99-107.CrossRefGoogle Scholar
  13. 13.
    K.N. Krishnan: Mater. Sci. Eng. A, 2002, vol. 327, pp. 246-51.CrossRefGoogle Scholar
  14. 14.
    R.M. Leal, C. Leitãoa, A. Loureiroa, D.M. Rodriguesa, P. Vilac: Mater. Sci. Eng. A, 2008, vol. 498, pp. 384–91.CrossRefGoogle Scholar
  15. 15.
    P.F. Mendez, K.E. Tello, T.J. Lienert: Acta Mater., 2010, vol. 58, pp. 6012-26.CrossRefGoogle Scholar
  16. 16.
    J.A. Schneider, R. Beshears, A.C. Nunes, Jr.: Mater. Sci. Eng. A, 2006, vol. 435-436, pp. 297-304.CrossRefGoogle Scholar
  17. 17.
    S. Xu, X. Deng: Acta Mater., 2008, vol. 56, pp. 1326–41.CrossRefGoogle Scholar
  18. 18.
    H. Zhang, S.B. Lin, L. Wu, J.C. Feng, S.L. Ma: Mater. Des., 2006, vol. 27, pp. 805–09.CrossRefGoogle Scholar
  19. 19.
    B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds: Mater. Sci. Eng. A, 2004, vol. 364, pp. 55–65.CrossRefGoogle Scholar
  20. 20.
    Z.W. Chen, S. Cui: Scripta Mater., 2008, vol. 58, pp. 417–20.CrossRefGoogle Scholar
  21. 21.
    A. Scialpi, L.A.C. De Filippis, P. Cavaliere: Mater. Des., 2007, vol. 28, pp. 1124-29.CrossRefGoogle Scholar
  22. 22.
    H.N.B. Schmidt, T.L. Dickerson, J.H. Hattel: Acta Mater., 2006, vol. 54, pp. 1199–1209.CrossRefGoogle Scholar
  23. 23.
    S. Muthukumaran, S.K. Mukherjee: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 337–40.CrossRefGoogle Scholar
  24. 24.
    S. Muthukumaran, S.K. Mukherjee: Int. J. Adv. Manuf. Technol., 2008, vol. 38, pp. 68–73.CrossRefGoogle Scholar
  25. 25.
    J.C. McClure, W. Tang, L.E. Murr, and X. Guo: Proc. 5th Int. Conf. Trends in Welding Res., Pine Mountain, GA, June 1998.Google Scholar
  26. 26.
    Y.J. Chao, X. Qi, W. Tang: Trans. ASME, 2003, vol. 125, pp. 138-45.Google Scholar
  27. 27.
    O. Frigaard, O. Grong, O.T. Midling: Metall. Mater. Trans. A, 2011, vol. 32A, pp. 1189-1200.Google Scholar
  28. 28.
    P.Colegrove, M. Painter, D. Graham, and T. Miller: 2nd Int. Symp. FSWing, TWI, June 2000.Google Scholar
  29. 29.
    P.A. Colegrove, H.R. Shercliff: Sci. Technol. Weld. Join., 2004, vol. 9, no. 6, pp. 483-92.CrossRefGoogle Scholar
  30. 30.
    P.A. Colegrove, H.R. Shercliff: J. Mater. Proc. Technol., 2005, vol. 169, pp. 320-27.CrossRefGoogle Scholar
  31. 31.
    H. Schmidt, J. Hattel: Model. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 77-93.CrossRefGoogle Scholar
  32. 32.
    B.C. Liechty, B.W. Webb, Int. J. Mach Tools Manuf., 2008, vol. 48, pp. 1474-85.CrossRefGoogle Scholar
  33. 33.
    H. Schmidt, J. Hattel, J. Wert: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 143-57.CrossRefGoogle Scholar
  34. 34.
    M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds: Sci. Technol. Weld. Join., 2003, vol. 8, no. 3, pp. 165-74.CrossRefGoogle Scholar
  35. 35.
    C.M. Chen, R. Kovacevic: Int. J. Mach. Tools. Manuf., 2003, vol. 43, pp. 1319-26.CrossRefGoogle Scholar
  36. 36.
    H. Schmidt, J. Hattel: Scripta Mater., 2008, vol. 58, pp. 332–37.CrossRefGoogle Scholar
  37. 37.
    J.A. Querin, J.A. Schneider: Weld. J. Supp., 2012, vol. 91, pp. 76s-82s.Google Scholar
  38. 38.
    J. Sanders: MSME Thesis, Mississippi State University, 2005.Google Scholar
  39. 39.
    T.U. Seidel, A.P. Reynolds: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2879-84.CrossRefGoogle Scholar
  40. 40.
    H.A. Rubisoff, J.A. Schneider, and A.C. Nunes, Jr.: Friction Stir Welding & Processing-V, TMS International, Materials Park, OH, 2009.Google Scholar
  41. 41.
    J.A. Schneider: Friction Stir Welding & Processing, chap. 3, ASM International, Materials Park, OH, 2007.Google Scholar
  42. 42.
    W.G. Moffet: The Handbook of Binary Phase Diagrams, Genium, New York, 1984.Google Scholar
  43. 43.
    L.E. Murr, Y. Li, R.D. Flores, E.A. Trillo, J.C. McClure (1998) Mater. Res. Innovat., 2, pp. 150–63.CrossRefGoogle Scholar
  44. 44.
    W.J. Arbegast: Hot Deformation of Al Alloys, TMS Int., Materials Park, OH, 2003.Google Scholar
  45. 45.
    Y. Li, L.E. Murr, J.C. McClure: Scripta Mater., 1999, vol. 40, pp1041-46.CrossRefGoogle Scholar
  46. 46.
    M. Brendel and J.A. Schneider: Proc. 9th Int. FSWing Symp., TWI, May 2012.Google Scholar
  47. 47.
    A.C. Nunes: Friction Stir Welding II, Proceedings MS&T, Columbus, OH, 2006, pp. 107–118.Google Scholar
  48. 48.
    W. Tang, X. Gui, J.C. McClure, L.E. Murr, A.C. Nunes, Jr.: J. Mater. Proc. Manuf. Sci., 1998, vol. 7, no. 2, pp. 163-72.CrossRefGoogle Scholar
  49. 49.
    Y. Sato, M. Urata, H. Kokawa: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 625-35.CrossRefGoogle Scholar
  50. 50.
    L.E. Murr, G. Liu, J.C. McClure: J. Mater. Sci., 1998, vol. 33, pp. 1243-51.CrossRefGoogle Scholar
  51. 51.
    T.W. Nelson, R.J. Steel, W.J. Arbegast: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 283-88.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Haley R. Doude
    • 1
  • Judy A. Schneider
    • 2
  • Arthur C. NunesJr.
    • 3
  1. 1.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA
  2. 2.Mechanical Engineering DepartmentMississippi State UniversityMississippi StateUSA
  3. 3.Marshall Space Flight Center (MSFC)National Aeronautics and Space Administration (NASA)HunstvilleUSA

Personalised recommendations