Metallurgical and Materials Transactions A

, Volume 45, Issue 10, pp 4210–4219 | Cite as

Influence of Deformation on the Precipitation Behavior of Nb(CN) in Austenite and Ferrite

  • Matthias Nöhrer
  • Walter Mayer
  • Sophie PrimigEmail author
  • Sabine Zamberger
  • Ernst Kozeschnik
  • Harald Leitner


The evolution of Nb precipitates in a low-alloyed steel at 973 K (700 °C) as a function of strain and subsequent dwell time is studied via atom-probe tomography (APT) and transmission electron microscopy. The results show that the volume fraction of the precipitates increases with increasing accumulated deformation because deformation-induced dislocations act as nucleation sites. The chemistry of these precipitates which are Nb carbonitrides changes with the dwell time after the deformation step. With increasing time, the C fraction increases. The precipitation analysis by APT in the austenite and the ferrite reveals that precipitates in the ferrite are larger and exhibit a higher C fraction compared to the precipitates in the austenite after the same thermo-mechanical treatment. The investigations also show that the volume fraction of Nb carbonitrides in the ferrite is higher than in the austenite.


Ferrite Austenite Martensite Bainite Dwell Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged.


  1. 1.
    T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, The University Press, London, 1997.Google Scholar
  2. 2.
    A. Bakkaloglu: Mater. Lett., 2002, vol. 56, pp. 200–9.CrossRefGoogle Scholar
  3. 3.
    L. Bäcke: ISIJ Int., 2010, vol. 50, pp. 239–47.CrossRefGoogle Scholar
  4. 4.
    S.S. Hansen, L.B. Vander Sande, and M. Cohen: Metall. Trans. A, 1980, vol. 11, pp. 387–402.CrossRefGoogle Scholar
  5. 5.
    S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr, and Y. Houbaert: ISIJ Int., 2009, vol. 49, pp. 911–20.CrossRefGoogle Scholar
  6. 6.
    S.F. Medina, A. Quispe, P. Valles, and J.L. Banos: ISIJ Int., 1999, vol. 39, pp. 913–22.CrossRefGoogle Scholar
  7. 7.
    M.G. Burke, L.J. Cuddy, J. Piller, and M.K. Miller: Mater. Sci. Technol., 1988, vol. 4, pp. 113–16.CrossRefGoogle Scholar
  8. 8.
    S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5519–28.CrossRefGoogle Scholar
  9. 9.
    Y. Cao, F. Xiao, G. Qiao, C. Huang, X. Zhang, Z. Wu, and B. Liao: Mater. Sci. Eng. A, 2012, vol. 552, pp. 502–13.CrossRefGoogle Scholar
  10. 10.
    B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.CrossRefGoogle Scholar
  11. 11.
    B. Dutta, E.J. Palmiere, and C.M. Sellars: Acta Mater., 2001, vol. 49, pp. 785–94.CrossRefGoogle Scholar
  12. 12.
    E.V. Pereloma, B.R. Crawford, and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 299, pp. 27–37.CrossRefGoogle Scholar
  13. 13.
    S.F. Medina and A. Quispe: ISIJ Int., 1996, vol. 36, pp. 1295–1300.CrossRefGoogle Scholar
  14. 14.
    J.S. Park, Y.S. Ha, S.J. Lee, and Y.K. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 560–68.CrossRefGoogle Scholar
  15. 15.
    B. Dutta, E. Valdes, and C.M. Sellars: Acta Metall. Mater., 1992, vol. 40, pp. 653–62.CrossRefGoogle Scholar
  16. 16.
    A.J. Craven, K. He, L.A.J. Garvie, and T.N. Baker: Acta Mater., 2000, vol. 48, pp. 3857–68.CrossRefGoogle Scholar
  17. 17.
    J.C. Herman, B. Donnay, and V. Leroy: ISIJ Int., 1992, vol. 32, pp. 779–85.CrossRefGoogle Scholar
  18. 18.
    S.C. Hong, S.H. Lim, H.S. Hong, K.J. Lee, D.H. Shin, and K.S. Lee: Mater. Sci. Eng. A, 2003, vol. 355, pp. 241–48.CrossRefGoogle Scholar
  19. 19.
    G. Chen, W. Yang, S. Guo, and Z. Sun: J. Univ. Sci. Technol. Beijing, 2007, vol. 14, pp. 36–40.CrossRefGoogle Scholar
  20. 20.
    M. Cabbibo, A. Fabrizi, M. Merlin, and G.L. Garagnani: J. Mater. Sci., 2008, vol. 43, pp. 6857–65.CrossRefGoogle Scholar
  21. 21.
    M. Perez, E. Courtois, D. Acevedo, T. Epicier, and P. Maugis: Philos. Mag. Lett., 2007, vol. 87, pp. 645–56.CrossRefGoogle Scholar
  22. 22.
    R.G. Baker, D.G. Brandon, and J. Nutting: Philos. Mag., 1959, vol. 4, pp. 1339–45.CrossRefGoogle Scholar
  23. 23.
    P. Maugis, M. Goune, P. Barges, D. Dougnac, D. Ravaine, M. Lamberigts, T. Siwecki, and Y. Bi: Mater. Sci. Forum, 2003, vol. 426–432, pp. 1313–18.CrossRefGoogle Scholar
  24. 24.
    M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith: Atom Probe Field Ion Microscopy, Oxford University Press Inc., Oxford, 1996, p. 532.Google Scholar
  25. 25.
    L.T. Stephenson, M.P. Moody, P.V. Liddicoat, and S.P. Ringer: Microsc. Microanal., 2007, vol. 13, pp. 448–63.CrossRefGoogle Scholar
  26. 26.
    Thermodynamic database for Fe-systems, (mc_fe_v1.030.tdb), Institute of Materials Science and Technology, Vienna University of Technology, Austria.Google Scholar
  27. 27.
    Mobility database for Fe-systems, (mc_fe_v1.001.ddb), Institute of Materials Science and Technology, Vienna University of Technology, Austria.Google Scholar
  28. 28.
    H. Beladi, I.B. Timokhina, S. Mukherjee, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 4186–196.CrossRefGoogle Scholar
  29. 29.
    S.C. Hong and K.S. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 148–59.CrossRefGoogle Scholar
  30. 30.
    M. Zhao, K. Yang, F. Xiao, and Y. Shan: Mater. Sci. Eng. A, 2003, vol. 355, pp. 126–36.CrossRefGoogle Scholar
  31. 31.
    W.J. Liu: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1641–657.CrossRefGoogle Scholar
  32. 32.
    R. Radis and E. Kozeschnik: Modell. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 1–15.CrossRefGoogle Scholar
  33. 33.
    R.C. Sharma, V.K. Lakshmanan, and J.S. Kirkaldy: Metall. Trans. A, 1984, vol. 15A, pp. 545–53.CrossRefGoogle Scholar
  34. 34.
    M. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia: Scripta Mater., 2004, vol. 50, pp. 1277–281.CrossRefGoogle Scholar
  35. 35.
    C. Lerchbacher, S. Zinner, and H. Leitner: Micron, 2012, vol. 43, pp. 818–26.CrossRefGoogle Scholar
  36. 36.
    F. Perrard and C. Scott: ISIJ Int., 2007, vol. 47, pp. 1168–177.CrossRefGoogle Scholar
  37. 37.
    Y. Li, J.A. Wilson, A.J. Craven, P.S. Mitchell, D.N. Crowther, and T.N. Baker: Mater. Sci. Technol., 2007, vol. 23, pp. 509–18.CrossRefGoogle Scholar
  38. 38.
    P. Maugis and M. Goune: Acta Mater., 2005, vol. 53, pp. 3359–67.CrossRefGoogle Scholar
  39. 39.
    M.M.A. Bepari: Metall. Trans. A, 1990, vol. 21A, pp. 2839–855.CrossRefGoogle Scholar
  40. 40.
    Y. Li, J.A. Wilson, D.N. Crowther, P.S. Mitchell, A.J. Craven, and T.N. Baker: ISIJ Int., 2004, vol. 44, pp. 1093–1102.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Matthias Nöhrer
    • 1
    • 4
  • Walter Mayer
    • 2
  • Sophie Primig
    • 1
    Email author
  • Sabine Zamberger
    • 2
    • 3
  • Ernst Kozeschnik
    • 2
  • Harald Leitner
    • 1
    • 5
  1. 1.Christian Doppler Laboratory for Early Stages of Precipitation, Department of Physical Metallurgy and Materials TestingMontanuniversität LeobenLeobenAustria
  2. 2.Christian Doppler Laboratory for Early Stages of PrecipitationVienna University of TechnologyViennaAustria
  3. 3.voestalpine Stahl Donawitz GmbH & Co KGLeobenAustria
  4. 4.buntmetall amstetten Ges.m.b.HAmstettenAustria
  5. 5.Böhler Edelstahl GmbH & Co KGKapfenbergAustria

Personalised recommendations