Metallurgical and Materials Transactions A

, Volume 45, Issue 10, pp 4470–4483 | Cite as

Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process

  • Yuan Tian
  • Donald McAllister
  • Hendrik Colijn
  • Michael Mills
  • Dave Farson
  • Mark Nordin
  • Sudarsanam Babu


Simulative builds, typical of the tip-repair procedure, with matching compositions were deposited on an INCONEL 718 substrate using the laser additive manufacturing process. In the as-processed condition, these builds exhibit spatial heterogeneity in microstructure. Electron backscattering diffraction analyses showed highly misoriented grains in the top region of the builds compared to those of the lower region. Hardness maps indicated a 30 pct hardness increase in build regions close to the substrate over those of the top regions. Detailed multiscale characterizations, through scanning electron microscopy, electron backscattered diffraction imaging, high-resolution transmission electron microscopy, and ChemiSTEM, also showed microstructure heterogeneities within the builds in different length scales including interdendritic and interprecipitate regions. These multiscale heterogeneities were correlated to primary solidification, remelting, and solid-state precipitation kinetics of γ″ induced by solute segregation, as well as multiple heating and cooling cycles induced by the laser additive manufacturing process.


Thermal Cycle Selective Laser Melting Interdendritic Region Microstructure Heterogeneity Scanning Transmission Electron Microscopy Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was performed within the Center for Integrative Materials Joining Science for Energy Applications (CIMJSEA), and the authors thank the Rolls Royce Corporation for supporting this project. This material is based upon work supported by the National Science Foundation under Grant No. 1034729. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. 1.
    E.A. Loria: Proc. Superalloy 718, Pittsburgh, 1989, TMS, Warrendale, PA, 1989.Google Scholar
  2. 2.
    J.F. Barker: Superalloy 718 Metallurgy and Application, TMS, Warrendale, PA, 1989, pp. 269–78.CrossRefGoogle Scholar
  3. 3.
    R.E. Schafrik, D.D Ward, and J.R. Groh: in Superalloys 718, 625, 706, and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 2001, pp. 1–11.Google Scholar
  4. 4.
    D.F. Paulonis and J.J. Schirra: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 2001, pp. 13–23.Google Scholar
  5. 5.
    J.P. Collier, S.H. Wong, J.C. Phillips, and J.K. Tien: Metall. Trans. A, 1988, vol. 19A, pp. 657–67.Google Scholar
  6. 6.
    A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, and P. Héritier: Mater. Sci. Eng. A, 2006, vol. A486, pp. 117–22.Google Scholar
  7. 7.
    X. Xie, Q. Liang, J. Dong, W. Meng, and Z. Xu: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 711–20.Google Scholar
  8. 8.
    M.K. Miller, S.S. Babu, and M.G. Burke: Mater. Sci. Eng. A, 1999, vol. A270, pp. 14–18.CrossRefGoogle Scholar
  9. 9.
    M.K. Miller, S.S. Babu, and M.G. Burke: Mater. Sci. Eng. A, 2002, vol. A327, pp. 84–88.CrossRefGoogle Scholar
  10. 10.
    R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.CrossRefGoogle Scholar
  11. 11.
    W.T. Geng, D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada: Phys. Rev. B, 2007, vol. 76, pp. 2241021–10.Google Scholar
  12. 12.
    P.J. Phillips, D. McAllister, Y. Gao, D. Lv, R.E.A. Williams, B. Peterson, Y. Wang, and M.J. Mills: App. Phys. Lett., 2012, vol. 100, pp. 211913-1–211913-3.Google Scholar
  13. 13.
    J.L. Burger, R.R. Biederman, and W.H. Cuuts: Superalloy 718—Metallurgy and Applications, E.A. Loria, ed., TMS, Warrendale, PA, 1989, pp. 207–17.Google Scholar
  14. 14.
    T. Alam M. Chaturvedi, S.P. Ringer, and J. Cairney: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7770–74.CrossRefGoogle Scholar
  15. 15.
    V. Kndrachuk, N. Wanferka, and J. Banhart: Mater. Sci. Eng. A, 2006, vol. 417, pp. 82–89.CrossRefGoogle Scholar
  16. 16.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133–64.CrossRefGoogle Scholar
  17. 17.
    J. Andersson and G.P. Sjöberg: Sci. Technol. Weld. Join., 2012, vol. 7, pp. 49–59.CrossRefGoogle Scholar
  18. 18.
    K. Makiewicz, S.S. Babu, M. Keller, and A. Chaudhary: Unpublished research, 2012.Google Scholar
  19. 19.
    J.E. Flinkfeldt and T.F. Pedersen: Mater. Sci. Forum, 1994, vols. 163–165, pp. 423–28.CrossRefGoogle Scholar
  20. 20.
    W. König and P.K. Kirner: Proc. Laser Materials Processing: Industrial and Microelectronics Applications, SPIE, Bellingham, WA, 1994, vol. 2207, pp. 44–52.Google Scholar
  21. 21.
    M. Riabkina-Fishman and J. Zahavi: Lasers Eng., 1996, vol. 5, pp. 31–41.Google Scholar
  22. 22.
    A. Chaudhary: ASM Handbook, 2010, vol. 22B, pp. 240–52.Google Scholar
  23. 23.
    C. Zhang, L. Li, and A. Deceuster: J. Mater. Process. Technol., 2011, vol. 211, pp. 1478–87.Google Scholar
  24. 24.
    J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M. Sequeira Almeida, F. Wang, and S. Williams: Computat. Mater. Sci., 2011, vol. 50, pp. 3315–24.CrossRefGoogle Scholar
  25. 25.
    A. Lundbäck and L.-E. Lindgren: Fin. Elem. Anal. Design, 2001, vol. 47, pp. 1169–77.CrossRefGoogle Scholar
  26. 26.
    M. Chiumenti, M. Cervera, A. Salmi, C. Agelet de Saracibar, N. Dialami, and K. Matsui: Comput. Methods Appl. Mech. Eng., 2010, vol. 199, pp. 2343–59.Google Scholar
  27. 27.
    “Guide for Verification and Validation in Computation Weld Mechanics,” AWS A9.5: 2013, American Welding Society, Miami, FL, 2013.Google Scholar
  28. 28.
    K. Makiewicz: Master’s Thesis, The Ohio State University, Columbus, OH, 2013.Google Scholar
  29. 29.
    H. Qi, M. Azer, and A. Ritter: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2410–22.CrossRefGoogle Scholar
  30. 30.
    Xiaoming Zhao, Jing Chen, Xin Lin, and Weidong Huang: Mater. Sci. Eng. A, 2008, vol. 478, pp. 119–24.CrossRefGoogle Scholar
  31. 31.
    Fencheng Liu, Xin Lin, Chunping Huang, Menghua Song, Gaolin Yang, Jing Chen, and Weidong Huang: J. Alloys Compd., 2011, vol. 509, pp. 4505–09.CrossRefGoogle Scholar
  32. 32.
    K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Acta Mater., 2012, vol. 60, pp. 2229–39.Google Scholar
  33. 33.
    Yaocheng Zhang, Zhuguo Li, Pulin Nie, and Yixiong Wu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 706–18.Google Scholar
  34. 34.
    A. Tabernero, S. Lamikiz, E. Martínez, J. Ukar, and J. Figueras: Int. J. Mach. Tools Manufact., 2011, vol. 51, pp. 456–70.CrossRefGoogle Scholar
  35. 35.
    M.J. Cieslak, T.J. Headley, and A.D. Romig: Metall. Trans. A, 1986, vol. 17A, pp. 2035–47.CrossRefGoogle Scholar
  36. 36.
    M.J. Cieslak: Weld J., 1981, vol. 70, pp. 49–56.Google Scholar
  37. 37.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, Jr., and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.CrossRefGoogle Scholar
  38. 38.
    J.C. Lippold, S.D. Kiser, and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley and Sons Inc., New York, NY, 2009.Google Scholar
  39. 39.
    AMS 5596 Specification “Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, Foil, and Plate 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe Consumable Electrode or Vacuum Induction Melted, 1775°F (968 °C) Solution Heat Treated,” AMS, SAE International, Oct. 2012.
  40. 40.
    W. Kurz, C. Bezencon, and M. Gaumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.CrossRefGoogle Scholar
  41. 41.
    J.M. Vitek: Acta Mater., 2005, vol. 53, pp. 53–67.CrossRefGoogle Scholar
  42. 42.
    J.-W. Park, J.M. Vitek, S.S. Babu, and S.A. David: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 472–82.CrossRefGoogle Scholar
  43. 43.
    T.D. Anderson and J.N. DuPont: Weld. J., 2011, vol. 90, pp. 27s–31s.Google Scholar
  44. 44.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.CrossRefGoogle Scholar
  45. 45.
    R. Rosenthal and D.R.F. West: Mater. Sci. Technol., 1999, vol. 15, pp. 1387–94.CrossRefGoogle Scholar
  46. 46.
    S.S. Babu: Int. Mater. Rev., 2009, vol. 54, pp. 333–67.CrossRefGoogle Scholar
  47. 47.
    R. Nakkalil, N.L. Richards, and M.C. Chaturvedi: Metall. Trans. A, 1993, vol. 24A, pp. 1169–79.CrossRefGoogle Scholar
  48. 48.
    S.M. Seo, J.H. Lee, Y.S. Yoo, C.Y. Jo, H. Miyahara, and K. Ogi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3150–59.CrossRefGoogle Scholar
  49. 49.
    O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 421–33.CrossRefGoogle Scholar
  50. 50.
    B. Radhakrishan and R.G. Thompson: Metall. Trans. A, 1991, vol. 22A, pp. 887–902.CrossRefGoogle Scholar
  51. 51.
    O.A. Ojo and F. Tancret: Computat. Mater. Sci., 2009, vol. 45, pp. 388–89.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Yuan Tian
    • 1
  • Donald McAllister
    • 1
  • Hendrik Colijn
    • 1
  • Michael Mills
    • 1
  • Dave Farson
    • 1
  • Mark Nordin
    • 2
  • Sudarsanam Babu
    • 3
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Rolls Royce CorporationIndianapolis USA
  3. 3.Department of Mechanical, Aerospace and Biomedical EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations