Metallurgical and Materials Transactions A

, Volume 45, Issue 9, pp 4129–4137 | Cite as

Consolidation of Carbon Nanotube Reinforced Aluminum Matrix Composites by High-Pressure Torsion

  • Hamed AsgharzadehEmail author
  • Soo-Hyun Joo
  • Hyoung Seop KimEmail author


Al-3 vol pct carbon nanotube (CNT) composites are fabricated by consolidation through high-pressure torsion (HPT) at room temperature. The densification behavior, microstructural evolution, and mechanical properties of Al/CNT composites are studied. The results show that density and microstructural homogeneity increase with increasing number of revolutions under a high pressure of 6 GPa. Substantial grain refinement is achieved after 10 turns of HPT with an average grain thickness of ~38 nm perpendicular to the compression axis of HPT. The Al/CNT composite shows a considerable increase in hardness and strength compared to the Al matrix. The strengthening mechanisms of the Al/CNT composite are found to be (i) grain refinement of Al matrix and (ii) Orowan looping. Raman spectroscopy and high-resolution transmission electron microscopy reveal that the structure of most of CNTs is changed during processing through mechanical milling and HPT.


Digital Image Correlation Equal Channel Angular Pressing Friction Stir Processing Scanning Transmission Electron Microscopy Accumulative Roll Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by A.D.D. through basic research Project (11-01-04-08). H.A. acknowledges the support of his visiting fellowship by the POSTECH Basic Science Research Institute Grant.


  1. 1.
    V.N. Popov: Mater. Sci. Eng. R, 2004, vol. 43, pp. 61-102.CrossRefGoogle Scholar
  2. 2.
    D. Poirier, R. Gauvin and R.A.L. Drew: Compos. A, 2009, vol. 40, pp. 1482-1489.CrossRefGoogle Scholar
  3. 3.
    J.Z. Liao and M.J. Tan: Powder Technol., 2011, vol. 208, pp. 42-48.CrossRefGoogle Scholar
  4. 4.
    C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li and Q. Cui: Adv. Mater., 2007, vol. 19, pp. 1128-1132.CrossRefGoogle Scholar
  5. 5.
    D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han and S.H. Hong: Carbon, 2012, vol. 50, pp. 2417-2423.CrossRefGoogle Scholar
  6. 6.
    H. Kwon, M. Estili, K. Takagi, T. Miyazaki and A. Kawasaki: Carbon, 2009, vol. 47, pp. 570-577.CrossRefGoogle Scholar
  7. 7.
    C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.CrossRefGoogle Scholar
  8. 8.
    H. Asgharzadeh, A. Simchi and H.S. Kim: Metall. Mater. Trans. A, 2011, vol. 42, pp. 816-824.CrossRefGoogle Scholar
  9. 9.
    H. Abdoli, H.R. Farnoush, H. Asgharzadeh and S.K. Sadrnezhaad: Powder Metall., 2011, vol. 54, pp. 24-29.CrossRefGoogle Scholar
  10. 10.
    J.B. Fogagnolo, F. Velasco, M.H. Robert and J.M. Torralba: Mater. Sci. Eng. A, 2003, vol. 342, pp. 131-143.CrossRefGoogle Scholar
  11. 11.
    C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma and D.H. Wu: Carbon, 1999, vol. 37, pp. 855-858.CrossRefGoogle Scholar
  12. 12.
    R. Zhong, H. Cong and P. Hou: Carbon, 2003, vol. 41, pp. 848-851.CrossRefGoogle Scholar
  13. 13.
    L. Jiang, Z. Li, G. Fan, L. Cao and D. Zhang: Carbon, 2012, vol. 50, pp. 1993–98.CrossRefGoogle Scholar
  14. 14.
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka: Compos. Sci. Technol., 2010, vol. 70, pp. 2237-2241.CrossRefGoogle Scholar
  15. 15.
    D.H. Nam, Y.K. Kim, S.I. Cha and S.H. Hong: Carbon, 2012, vol. 50, pp. 4809-4814.CrossRefGoogle Scholar
  16. 16.
    A.M. Al-Qutub, A. Khalil, N. Saheb and A.S. Hakeem: Wear, 2013, vol. 297, pp. 752-761.CrossRefGoogle Scholar
  17. 17.
    L. Ci, Z. Ryu, N.Y. Jin-Phillipp and M. Rühle: Acta Mater., 2006, vol. 54, pp. 5367-5375.CrossRefGoogle Scholar
  18. 18.
    R. Derakhshandeh and A Jenabali Jahromi: Mater. Des., 2011, vol. 32, pp. 3377–88.Google Scholar
  19. 19.
    P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong and H.S. Kim: J. Mater. Process. Tech., 2007, vol. 187-188, pp. 318-320.CrossRefGoogle Scholar
  20. 20.
    D. Lahiri, S.R. Bakshi, A.K. Keshri, Y. Liu and A. Agarwal: Mater. Sci. Eng. A, 2009, vol. 523, pp. 263-270.CrossRefGoogle Scholar
  21. 21.
    S. Salimi, H. Izadi and A. P. Gerlich: J. Mater. Sci., 2011, vol. 46, pp. 409-415.CrossRefGoogle Scholar
  22. 22.
    H. Izadi and A.P. Gerlich: Carbon, 2012, vol. 50, pp. 4744-4749.CrossRefGoogle Scholar
  23. 23.
    Z.Y. Liu, B.L. Xiao, W.G. Wang and Z.Y. Ma: Carbon, 2012, vol. 50, pp. 1843-1852.CrossRefGoogle Scholar
  24. 24.
    S.-H. Joo, S.C. Yoon, C.S. Lee, D.H. Nam, S.H. Hong and H.S. Kim: J. Mater. Sci., 2010, vol. 45, pp. 4652-4658.CrossRefGoogle Scholar
  25. 25.
    T. Tokunaga, K. Kaneko and Z. Horita: Mater. Sci. Eng. A, 2008, vol. 490, pp. 300-304.CrossRefGoogle Scholar
  26. 26.
    D.C. Patil, S. A. Kori, K. Venkateswarlu, G. Das, S.N. Alhajeri and T.G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4773-4779.CrossRefGoogle Scholar
  27. 27.
    A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.CrossRefGoogle Scholar
  28. 28.
    Y. Cao, Y.B. Wang, R.B. Figueiredo, L. Chang, X.Z. Liao, M. Kawasaki, W.L. Zheng, S.P. Ringer, T.G. Langdon and Y.T. Zhu: Acta Mater., 2011, vol. 59, pp. 3903-3914.CrossRefGoogle Scholar
  29. 29.
    C. Casiraghi, A.C. Ferrari, and J. Robertson: Phys. Rev. B, 2005, vol. 72, pp. 085401/1–14.Google Scholar
  30. 30.
    H.J. Choi, J.H. Shin and D.H. Bae: Compos. A, 2012, vol. 43, pp. 1061-1072.CrossRefGoogle Scholar
  31. 31.
    C.F. Deng, D.Z. Wang, X.X. Zhang and A.B. Li: Mater. Sci. Eng. A, 2007, vol.444, pp. 138-145.CrossRefGoogle Scholar
  32. 32.
    R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin and T.G. Langdon: Acta Mater., 2012, vol. 60, pp. 3190-3198.CrossRefGoogle Scholar
  33. 33.
    K. Edalati, R. Miresmaeili, Z. Horita, H. Kanayama and R. Pippan: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7301- 7305.CrossRefGoogle Scholar
  34. 34.
    P. Jenei, E.Y. Yoon, J. Gubicza, H.S. Kim, J.L. Lábár and T. Ungár: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4690-4695.CrossRefGoogle Scholar
  35. 35.
    A.P. Zhilyaev, K. Oh-ishi, T.G. Langdon and T.R. McNelley: Mater. Sci. Eng. A, 2005, vol. 410-411, pp. 277-280.CrossRefGoogle Scholar
  36. 36.
    M. Kawasaki, S.N. Alhajeri, C. Xu and T.G. Langdon: Mater. Sci. Eng. A, 2011, vol. 529, pp. 345-351.CrossRefGoogle Scholar
  37. 37.
    C. Xu, Z. Horita and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 5168-5176.CrossRefGoogle Scholar
  38. 38.
    C. Xu, Z. Horita and T.G. Langdon: Acta Mater., 2007, vol. 55, pp. 203-212.CrossRefGoogle Scholar
  39. 39.
    H. Li, A. Misra, Y. Zhu, Z. Horita, C.C. Koch and T.G. Holesinger: Mater. Sci. Eng. A, 2009, vol. 523, pp. 60-64.CrossRefGoogle Scholar
  40. 40.
    H. Asgharzadeh, A. Simchi and H.S. Kim: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4897-4905.CrossRefGoogle Scholar
  41. 41.
    A.S. Argon and P. Haasen: Acta Metall. Mater., 1993, vol. 41, pp. 3289-3306.CrossRefGoogle Scholar
  42. 42.
    R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch and B. Baudelet: Acta Mater., 1996, vol. 44, pp. 4705-4712.CrossRefGoogle Scholar
  43. 43.
    M. Zehetbauer and V. Seumer: Acta Metall. Mater., 1993, vol. 41, pp. 577-588.CrossRefGoogle Scholar
  44. 44.
    X.G. Qiao, N. Gao and M.J. Starink: Philos. Mag., 2012, vol. 92, pp. 446-470.CrossRefGoogle Scholar
  45. 45.
    R. George, K.T. Kashyap, R. Rahul and S. Yamdagni: Scripta Mater., 2005, vol. 53, pp. 1159-1163.CrossRefGoogle Scholar
  46. 46.
    R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia and J.M. Schoenung: Scripta Mater., 2009, vol. 61, pp. 1052-1055.CrossRefGoogle Scholar
  47. 47.
    T. Tokunaga, K. Kaneko, K. Sato, and Z. Horita: Scripta Mater., 2008, vol. 58, pp. 735-738.CrossRefGoogle Scholar
  48. 48.
    H. Asgharzadeh, A. Simchi and H.S. Kim: Mater. Charact., 2013, vol. 75, pp. 108-114.CrossRefGoogle Scholar
  49. 49.
    E. Orowan: Z Phys., 1934, vol. 89, pp. 634-659.CrossRefGoogle Scholar
  50. 50.
    T.H. Courtney: Mechanical behavior of materials. Singapore: McGraw-Hill Book Co.; 2000.Google Scholar
  51. 51.
    M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.CrossRefGoogle Scholar
  52. 52.
    H.J. Choi, J.H. Shin and D.H. Bae: Compos. Sci. Technol., 2011, vol. 71, pp. 1699-1705.CrossRefGoogle Scholar
  53. 53.
    K. Prashantha, J. Soulestin, M.F. Lacrampe, P. Krawczak, G. Dupin and M. Claes: Compos. Sci. Technol., 2009, vol. 69, pp. 1756-1763.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Department of Materials Engineering, Faculty of Mechanical EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea

Personalised recommendations