Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 8, pp 3545–3553 | Cite as

Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

  • Susanne Steuer
  • Robert F. Singer
Article

Abstract

Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

Keywords

Boride Parent Material Interdendritic Region Transient Liquid Phase Braze Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the DFG research group (Graduiertenkolleg) 1229 “Stable and metastable multiphase systems for high temperature applications” and DFG collaborative research center SFB/Transregio 103 “Superalloy single crystals—From atoms to turbine blades” for financial support of part of this work and the Institut für Werkstoffkunde, Technische Universität Darmstadt for executing the mechanical tests of this study.

References

  1. 1.
    R.C. Reed, The Superalloys: Fundamentals and Applications, 1st ed., Cambridge University Press, New York, 2006.CrossRefGoogle Scholar
  2. 2.
    T. M. Pollock, S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361-73.CrossRefGoogle Scholar
  3. 3.
    K. Nishimoto, K. Saida, D. Kim, Y. Nakao: ISIJ Int., 1995, vol. 35, pp. 1298-1306.CrossRefGoogle Scholar
  4. 4.
    R. Zhongci, W. Shuncai, Z. Yunrong: Scripta Mater., 1996, vol. 34, pp. 163-68.CrossRefGoogle Scholar
  5. 5.
    Y. Zheng, L. Zhao, K. Tangri: J. Mater. Sci., 1993, vol. 28, pp. 823-29.CrossRefGoogle Scholar
  6. 6.
    A. Schnell: Dissertation, EPFL, Faculte sciences et techniques de l’ingenieur, 2004.Google Scholar
  7. 7.
    D. Kim, K. NIshimoto: Met. Mater. Int., 2002, vol. 8, pp. 403-10.CrossRefGoogle Scholar
  8. 8.
    M.K. Dinkel, P. Heinz, F. Pyczak, A. Volek, M. Ott, E. Affeldt, A. Vossberg, M. Göken, and R.F. Singer: International Symposium on Superalloys, R.C. Reed, Seven Springs, 2008, pp. 211–20.Google Scholar
  9. 9.
    D. S. Duvall, W. A. Owczarski, D. F. Paulonis: Weld. J., 1974, vol. 53, no. 4, pp. 203–14.Google Scholar
  10. 10.
    R. Aluru, S. V. Chitti, N. Sofyan, R. D. Love, J. W. Fergus, W. F. Gale: Mater. Sci. Technol., 2008, vol. 24, no. 5, pp. 517-28.CrossRefGoogle Scholar
  11. 11.
    J. D. Liu, T. Jin, Z. H. Wang, X. F. Sun, H. R. Guan, Z. Q. Hu: Mater. Sci. Forum, 2007, vol. 546–549, pp. 1245–48.CrossRefGoogle Scholar
  12. 12.
    M. Pouranvari, A. Ekrami, A. H. Kokabi: J. Alloys Compd., 2008, vol. 461, pp. 341-47.CrossRefGoogle Scholar
  13. 13.
    T. Li, Q. Y. Wang, A. Q. Wang, Z. X. Wen, Z. F. Yue: Key Eng. Mater., 2005, vol. 297–300, pp. 1489-94.CrossRefGoogle Scholar
  14. 14.
    X. Wu, R. S. Chandel, H. Li: J. Mater. Sci., 2001, vol. 36, pp. 1539-46.CrossRefGoogle Scholar
  15. 15.
    M. Pouranvari, A. Ekrami, A. H. Kokabi: Mater. Sci. Eng. A, 2013, vol. 568, pp. 76-82.CrossRefGoogle Scholar
  16. 16.
    M. Pouranvari, A. Ekrami, A. H. Kokabi : Mater. Des., 2013, vol. 50, pp. 694-701.CrossRefGoogle Scholar
  17. 17.
    M. Mosallaee, A. Ekrami, K. Ohsaha, K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2389-2402.CrossRefGoogle Scholar
  18. 18.
    M. Pouranvari, A. Ekrami, A. H. Kokabi : Mater. Sci. Eng. A, 2008, vol. 490, pp. 229-34.CrossRefGoogle Scholar
  19. 19.
    M. Pouranvari: World Appl. Sci. J., 2011, vol. 15, pp. 1507-11.Google Scholar
  20. 20.
    J. D. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu: Mater. Charact., 2008, vol. 59, pp. 68-73.CrossRefGoogle Scholar
  21. 21.
    J.D. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, and Z. Hu: International Symposium on Superalloys, R.C. Reed, ed., Seven Springs, 2008, pp. 295–99.Google Scholar
  22. 22.
    J. D. Liu, T. Jin, W. Lin, X. Sun, H. Guan, Z. Hu: J. Alloys Compd., 2008, vol. 457, pp. 185-90.CrossRefGoogle Scholar
  23. 23.
    J. Cao, Y. F. Wang, X. G. Song, C. Li, J. C. Feng: Mater. Sci. Eng. A, 2014, vol. 590, pp. 1-6.CrossRefGoogle Scholar
  24. 24.
    D. Shi, C. Dong, X. Yang, L. Zhang, J. Hou, Y. Liu: Mater. Sci. Eng. A, 2012, vol. 545, pp. 162-67.CrossRefGoogle Scholar
  25. 25.
    X. Yang, C. Dong, D. Shi, L. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7005-11.CrossRefGoogle Scholar
  26. 26.
    R. Aluru, N.I. Sofyan, and W.F. Gale: International Symposium of Research Students, Chennai, India, 2004, pp. 1–9.Google Scholar
  27. 27.
    J. Liu, J. Cao, X. Lin, X. Song, J. Feng, Mater. Des., 2013, vol. 49, pp. 622-26.CrossRefGoogle Scholar
  28. 28.
    J.-D. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu: Sci. Technol. Weld., 2010, vol. 15, pp. 194-98.CrossRefGoogle Scholar
  29. 29.
    W. F. Gale, Y. Guan: J. Mater. Sci., 1999, vol. 34, pp. 1061-71.CrossRefGoogle Scholar
  30. 30.
    Y. Nakao, K. Nishimoto, K. Shinozaki, and C.Y. Kang: Adv. Join. Technol., 1990, pp. 129–44.Google Scholar
  31. 31.
    R. K. Saha, T. I. Khan: J. Mater. Sci., 2007, vol. 42, pp. 9187-93.CrossRefGoogle Scholar
  32. 32.
    D. Kim, C. Kang, W. Lee: Met. Miner., 1999, vol. 5, pp. 477-84.Google Scholar
  33. 33.
    A. Ghoneim, O. A. Ojo: Phil. Mag., 2011, vol. 91, pp. 3649-66.CrossRefGoogle Scholar
  34. 34.
    S. Steuer, R. F. Singer, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2226-32.CrossRefGoogle Scholar
  35. 35.
    J. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu: Mater. Charact., 2011, vol. 62, pp. 545-53.CrossRefGoogle Scholar
  36. 36.
    O. A. Idowu, O. A. Ojo, M. C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2787-96.CrossRefGoogle Scholar
  37. 37.
    C. E. Campbell, W. J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2835-3847.CrossRefGoogle Scholar
  38. 38.
    S. Steuer, S. Piegert, M. Frommherz, R. F. Singer, A. Scholz: Adv. Mater. Res., 2011, vol. 278, pp. 454-59.CrossRefGoogle Scholar
  39. 39.
    M. Dinkel: Dissertation, Universität Erlangen-Nürnberg, 2010.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Institute of Science and Technology of MetalsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Institut PprimeCNRS - ENSMA - Université de PoitiersPoitiersFrance

Personalised recommendations