Metallurgical and Materials Transactions A

, Volume 45, Issue 8, pp 3401–3411 | Cite as

Investigation of Precipitation Behavior in Age-Hardenable Cu-Ti Alloys by an Extraction-Based Approach

  • Satoshi Semboshi
  • Shigeo Sato
  • Mikio Ishikuro
  • Kazuaki Wagatsuma
  • Akihiro Iwase
  • Takayuki Takasugi
Article

Abstract

We investigated the precipitation processes in Cu-4 mol pct Ti alloy specimens aged at 723 K (450 °C), by means of X-ray diffraction and chemical analyses of the precipitates extracted from the parent alloy specimens. Aging-induced precipitate particles of a spinodally decomposed disorder, α′; those of a metastable order, β′-Cu4Ti; and those of a stable order, β-Cu4Ti, were continuously formed in the aged specimens. The extraction of the precipitate particles from the aged specimens by submergence in a nitric solution allowed for not only the structural analyses of the constituent precipitate phases but also the quantitative evaluation of their chemical compositions and volume fractions. Early during the aging process, the supersaturated Cu solid solution decomposes spinodally in a continuous manner, and an unstable disorder, α′, appears. Then, fine needle-shaped β′-Cu4Ti particles, which have a Ti content of approximately 37.5 mol pct, form in the Cu matrix. During prolonged aging, coarse cellular components composed of the terminal Cu solid solution and stable β-Cu4Ti particles which have a Ti content of 20.5 mol pct nucleate and grow, primarily in the grain boundaries, at the expense of the metastable β′-Cu4Ti particles. The volume fraction of the β′-Cu4Ti particles in the alloy reaches a maximum of approximately 1.7 pct after aging for 24 hours, while that of the β-Cu4Ti particles increases steadily to more than 18 pct after 480 hours. The volume fraction of the fine β′-Cu4Ti particles in the alloy specimens remained constant throughout the age-hardening, indicating that the hardening is primarily owing to the fine dispersion of the β′-Cu4Ti particles and not because of the large volume fraction of coarse β-Cu4Ti particles.

References

  1. 1.
    J.Y. Brun, S.J. Hamar-Thibault, and C.H. Allibert: Z. Metallk., 1983, vol. 74, pp. 525–29.Google Scholar
  2. 2.
    M.J. Saarivirta and H.S. Cannon: Met. Prog., 1959, vol. 76, pp. 81–84.Google Scholar
  3. 3.
    S. Nagarjuna, K. Balasubramanian, and D.S. Sarma: Mater. Trans. JIM, 1995, vol. 36, pp. 1058–66.CrossRefGoogle Scholar
  4. 4.
    A.A. Hameda and L. Blaz: Mater. Sci. Eng. A, 1998, vol. 254, pp. 83–89.CrossRefGoogle Scholar
  5. 5.
    R. Markandeya, S. Nagarjuna, and D.S. Sarma: Mater. Sci. Eng. A, 2004, vol. 404, pp. 305–13.CrossRefGoogle Scholar
  6. 6.
    S. Nagarjuna and D.S. Sarma: J. Mater. Sci., 2002, vol. 37, pp. 1929-40.CrossRefGoogle Scholar
  7. 7.
    M. Sobhani, A. Mirhabibi, H. Arabi, and R.M.D. Brydson: Mater. Sci. Eng. A, 2013, vol. 577, pp. 16–22.CrossRefGoogle Scholar
  8. 8.
    D. Bozic, J. Stasic, J. Ruzic, M. Vilotijevic, and V. Rajkovic: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8139-44.CrossRefGoogle Scholar
  9. 9.
    S. Semboshi and T.J. Konno: J. Mater. Res., 2008, vol. 23, pp. 473–77.CrossRefGoogle Scholar
  10. 10.
    S. Semboshi, T. Nishida, and H. Numakura: Mater. Sci. Eng. A, 2009, vol. 517, pp. 105–13.CrossRefGoogle Scholar
  11. 11.
    S. Semboshi, T. Nishida, H. Numakura, T. Al-Kassab, and R. Kirchheim: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2136–43.CrossRefGoogle Scholar
  12. 12.
    D.E. Laughlin and J.W. Cahn: Acta Metall., 1975, vol. 23, pp. 329–39.CrossRefGoogle Scholar
  13. 13.
    J.A. Cornie, A. Datta, and W.A. Soffa: Metall. Trans., 1973, vol. 4A, pp. 727–33.CrossRefGoogle Scholar
  14. 14.
    A. Datta A and W.A. Soffa: Acta Metall., 1976, vol. 24, pp. 987–1001.CrossRefGoogle Scholar
  15. 15.
    L.A. Nesbit and D.E. Laughlin: Acta Metall., 1978, vol. 26, pp. 815–25.CrossRefGoogle Scholar
  16. 16.
    W.A. Soffa and D.E. Laughlin: Acta Metall., 1989, vol. 37, pp. 3019–28.CrossRefGoogle Scholar
  17. 17.
    W.A. Soffa and D.E. Laughlin: Prog. Mater. Sci., 2004, vol. 49, pp. 347–66.CrossRefGoogle Scholar
  18. 18.
    T.J. Konno, R. Nishio, S. Semboshi, T. Ohsuna, and E. Okunishi: J. Mater. Sci., 2008, vol. 43, pp. 3761–68.CrossRefGoogle Scholar
  19. 19.
    H.U. Pfeifer, S. Bhan, and K. Schubert: J. Less-Common Met., 1968, vol. 14, pp. 291–302.CrossRefGoogle Scholar
  20. 20.
    R.C. Ecob, J.V. Bee, B. Ralph: Phys. Status. Solidi. (a), 1979, vol. 52, pp. 201–10.CrossRefGoogle Scholar
  21. 21.
    R.C. Ecob, J.V. Bee, and B. Ralph: Metall. Trans. A, 1980, vol. 11A, pp. 1407–14.CrossRefGoogle Scholar
  22. 22.
    A.W. Thompson and J.C. Williams: Metall. Trans. A, 1983, vol. 15A, pp. 931–37.Google Scholar
  23. 23.
    A. Chanda and M. De; J. Alloys Compd., 2000, vol. 313, pp. 104–14.CrossRefGoogle Scholar
  24. 24.
    A.K. Gupta, P.H. Marios, and D.J. Lloyd: Mater. Charact., 1996, vol. 37, pp. 61–80.CrossRefGoogle Scholar
  25. 25.
    T. Nagasaka, Y. Hishinuma, T. Muroga, Y. Li, H. Watanabe, H. Tanigawa, H. Sakasegawa, and M. Ando: Fusion. Eng. Des., 2011, vol. 86, pp. 2581-84.CrossRefGoogle Scholar
  26. 26.
    A.L. Rivas, D.K. Matlock, and J.G. Speer: Mater. Charact., 2008, vol. 59, pp. 571–77.CrossRefGoogle Scholar
  27. 27.
    M. Femandes, N. Cheung N, and A. Garcia: Mater. Charact., 2002, vol. 48, pp. 255–61.CrossRefGoogle Scholar
  28. 28.
    Z. Rdzawski and J. Stobrawa: Scripta Metall., 1986, vol. 20, pp. 341–44.CrossRefGoogle Scholar
  29. 29.
    M.Y.W. Lou and N.J. Grant: Metall. Trans. A, 1984, vol. 15A, pp. 1491–93.CrossRefGoogle Scholar
  30. 30.
    S. Semboshi, M. Ishikuro, S. Sato, K. Wagatsuma, and T. Takasugi: Mater. Charact., 2013, vol. 82, pp. 23–31.CrossRefGoogle Scholar
  31. 31.
    S. Nagarjuna and M. Srinvivas: Mater. Sci. Eng. A, 2005, vol. 406, pp. 185–94.CrossRefGoogle Scholar
  32. 32.
    P.E. Donovan: J. Mater. Sci. Let., 1985, vol. 4, pp. 1337–39.CrossRefGoogle Scholar
  33. 33.
    T. Souma and M. Ohtaki: J. Alloys Compd., 2006, vol. 413, pp. 289–97.CrossRefGoogle Scholar
  34. 34.
    W.A. Johnson and R. F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–17.Google Scholar
  35. 35.
    M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.CrossRefGoogle Scholar
  36. 36.
    M.J. Richards and J.W. Cahn: Acta Metall., 1971, vol. 19, pp. 1263–77.CrossRefGoogle Scholar
  37. 37.
    N. Karlsson: J. Inst. Met., 1951, vol. 78, pp. 391–405.Google Scholar
  38. 38.
    T. Gladman: Mater. Sci. Technol., 1999, vol. 15, pp. 30–36.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Satoshi Semboshi
    • 1
    • 2
  • Shigeo Sato
    • 2
  • Mikio Ishikuro
    • 2
  • Kazuaki Wagatsuma
    • 2
  • Akihiro Iwase
    • 3
  • Takayuki Takasugi
    • 3
  1. 1.Kansai Center, Institute for Materials ResearchTohoku UniversitySakaiJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan
  3. 3.Department of Materials ScienceOsaka Prefecture UniversitySakaiJapan

Personalised recommendations