Metallurgical and Materials Transactions A

, Volume 45, Issue 8, pp 3609–3618 | Cite as

Powder-Route Synthesis and Mechanical Testing of Ultrafine Grain Tungsten Alloys

  • Zachary C. Cordero
  • Emily L. Huskins
  • Mansoo Park
  • Steven Livers
  • Megan Frary
  • Brian E. Schuster
  • Christopher A. SchuhEmail author


We report a W-rich alloy (W-7Cr-9Fe, at. pct) produced by high-energy ball milling, with alloying additions that both lower the densification temperature and retard grain growth. The alloy’s consolidation behavior and the resultant compacts’ microstructure and mechanical properties are explored. Under one condition, a 98 pct dense compact with a mean grain size of 130 nm was achieved, and exhibited a hardness of 13.5 GPa, a dynamic uniaxial yield strength of 4.14 GPa in Kolsky bar experiments, and signs of structural shear localization during deformation.


Shear Localization High Relative Density Electro Discharge Machine Thermal Excursion High Strain Rate Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the US Defense Threat Reduction Agency under Grant No. HDTRA1-11-1-0062. ZCC acknowledges support from the Department of Defense through the NDSEG fellowship program. ELH acknowledges support from the US Army Research Laboratory through the Oak Ridge Institute for Space and Education (ORISE) Program # 1120-1120-99. BES would like to acknowledge support work from the Cooperative Research and Development Agreement #11-24. We would like to thank Ms. Alexandria Will-Cole for her indentation work on the intermetallic phase, Dr. Kisub Cho for performing the THERMOCALC calculations, and Dr. Daniel T. Casem for his assistance with the Kolsky bar tests.


  1. 1.
    B.E. Schuster, J.P. Ligda, Z.L. Pan, and Q. Wei: JOM, 2011, vol. 63, pp. 27–31.CrossRefGoogle Scholar
  2. 2.
    Q. Wei, K.T. Ramesh, B.E. Schuster, L.J. Kecskes, and R.J. Dowding: JOM, 2006, vol. 58, pp. 40–44.CrossRefGoogle Scholar
  3. 3.
    D.B. Snow: Metall. Trans. A, 1976, vol. 7, pp. 783–94.CrossRefGoogle Scholar
  4. 4.
    D.B. Snow: Metall. Trans. A, 1979, vol. 10, pp. 815–21.CrossRefGoogle Scholar
  5. 5.
    E.S. Meieran and D.A. Thomas: Trans Met Soc AIME, 1965, vol. 233, pp. 937–43.Google Scholar
  6. 6.
    L.J. Kecskes, K.C. Cho, R.J. Dowding, B.E. Schuster, R.Z. Valiev, and Q. Wei: Mater. Sci. Eng. A, 2007, vol. 467, pp. 33–43.CrossRefGoogle Scholar
  7. 7.
    Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L.S. Magness Jr., and K. Cho: Acta Mater., 2006, vol. 54, pp. 4079–89.CrossRefGoogle Scholar
  8. 8.
    A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893–979.CrossRefGoogle Scholar
  9. 9.
    L.S. Magness Jr.: Mech. Mater., 1994, vol. 17, pp. 147–54.CrossRefGoogle Scholar
  10. 10.
    Q. Wei, L.J. Kecskes, and K.T. Ramesh: Mater. Sci. Eng. A, 2013, vol. 578, pp. 394–401.CrossRefGoogle Scholar
  11. 11.
    Q. Wei, T. Jiao, K.T. Ramesh, E. Ma, L.J. Kecskes, L.S. Magness, R.J. Dowding, V.U. Kazykhanov, and R.Z. Valiev: Acta Mater., 2006, vol. 54, pp. 77–87.Google Scholar
  12. 12.
    A.K. Srivastav and B.S. Murty: J. Alloys Compd., 2012, vol. 536, Supplement 1, pp. S41–S44.CrossRefGoogle Scholar
  13. 13.
    E. Oda, K. Ameyama, and S. Yamaguchi: Mater. Sci. Forum, 2006, vol. 503-504, pp. 573–78.CrossRefGoogle Scholar
  14. 14.
    H. Wang, Z.Z. Fang, K.S. Hwang, H. Zhang, and D. Siddle: Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 312–16.CrossRefGoogle Scholar
  15. 15.
    R. Sarkar, P. Ghosal, M. Premkumar, A.K. Singh, K. Muraleedharan, A. Chakraborti, T.P. Bagchi, and B. Sarma: Powder Metall., 2008, vol. 51, pp. 166–70.CrossRefGoogle Scholar
  16. 16.
    T.S. Srivatsan, K. Manigandan, M. Petraroli, R.M. Trejo, and T.S. Sudarshan: Adv. Powder Technol., 2013, vol. 24, pp. 190–99.CrossRefGoogle Scholar
  17. 17.
    B.R. Klotz, F.R. Kellogg, E.M. Klier, R.J. Dowding, and K.C. Cho: Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder, Army Research Laboratory, 2009.Google Scholar
  18. 18.
    K.C. Cho, R.H. Woodman, B.R. Klotz, and R.J. Dowding: Mater. Manuf. Process., 2004, vol. 19, pp. 619–30.CrossRefGoogle Scholar
  19. 19.
    O. El-Atwani, D.V. Quach, M. Efe, P.R. Cantwell, B. Heim, B. Schultz, E.A. Stach, J.R. Groza, and J.P. Allain: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5670–77.CrossRefGoogle Scholar
  20. 20.
    U.K. Vashi, R.W. Armstrong, and G.E. Zima: Metall. Trans., 1970, vol. 1, pp. 1769–71.CrossRefGoogle Scholar
  21. 21.
    C. Agte and J. Vacek: Tungsten and Molybdenum, NASA Trans., 1963.Google Scholar
  22. 22.
    H.H. Tian and M. Atzmon: Philos. Mag. A, 1999, vol. 79, pp. 1769–86.CrossRefGoogle Scholar
  23. 23.
    ASTM Standard E562-11: Test Method for Determining Volume Fraction by Systematic Manual Point Count, vol. 03.01, Annual Book of ASTM Standards, ASTM International, Materials Park, OH, 2011.Google Scholar
  24. 24.
    ASTM Standard E1245-03: Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, vol. 03.01, Annual Book of ASTM Standards, ASTM International, Materials Park, OH, 2008.Google Scholar
  25. 25.
    ASTM Standard E112-12: Test Methods for Determining Average Grain Size, vol. 03.01, Annual Book of ASTM Standards, ASTM International, Materials Park, OH, 2012.Google Scholar
  26. 26.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3–20.CrossRefGoogle Scholar
  27. 27.
    ASM Handbook: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, Vol. 2, ASM International, Metals Park, OH, 1990.Google Scholar
  28. 28.
    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Science, 2004, vol. 305, pp. 986–89.CrossRefGoogle Scholar
  29. 29.
    W.W. Chen and B. Song: Split Hopkinson (Kolsky) Bar Design, Testing and Applications, Springer, New York, NY, 2011.CrossRefGoogle Scholar
  30. 30.
    T.H. Courtney and Z. Wang: Scr. Metall. Mater., 1992, vol. 27, pp. 777–82.CrossRefGoogle Scholar
  31. 31.
    P. Gustafson: Metall. Trans. A, 1988, vol. 19, pp. 2531–46.CrossRefGoogle Scholar
  32. 32.
    S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, and S.K. Pabi: Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 191–203.CrossRefGoogle Scholar
  33. 33.
    M.S. El-Eskandarany, K. Sumiyama, and K. Suzuki: Acta Mater., 1997, vol. 45, pp. 1175–87.CrossRefGoogle Scholar
  34. 34.
    C.N.J. Wagner, E. Yang, and M.S. Boldrick: Nanostructured Mater., 1996, vol. 7, pp. 1–11.CrossRefGoogle Scholar
  35. 35.
    H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Metall. Trans. A, 1990, vol. 21, pp. 2333–37.CrossRefGoogle Scholar
  36. 36.
    R. Malewar, K.S. Kumar, B.S. Murty, B. Sarma, and S.K. Pabi: J. Mater. Res., 2007, vol. 22, pp. 1200–06.CrossRefGoogle Scholar
  37. 37.
    A.O. Aning, Z. Wang, and T.H. Courtney: Acta Metall. Mater., 1993, vol. 41, pp. 165–74.CrossRefGoogle Scholar
  38. 38.
    D. Oleszak and P.H. Shingu: J. Appl. Phys., 1996, vol. 79, pp. 2975–80.CrossRefGoogle Scholar
  39. 39.
    D.P. Xiang, L. Ding, Y.Y. Li, J.B. Li, X.Q. Li, and C. Li: Mater. Sci. Eng. A, 2012, vol. 551, pp. 95–99.CrossRefGoogle Scholar
  40. 40.
    U. Herr and K. Samwer: Nanostructured Mater., 1992, vol. 1, pp. 515–21.CrossRefGoogle Scholar
  41. 41.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  42. 42.
    T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Science, 2012, vol. 337, pp. 951–54.CrossRefGoogle Scholar
  43. 43.
    D. Peckner: The Strengthening of Metals, Reinhold, New York, 1964, pp. 93–139.Google Scholar
  44. 44.
    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., Wiley, New York, NY, 1996, pp. 8.Google Scholar
  45. 45.
    C.S. Barrett and T.B. Massalski: Structure of Metals, 3rd ed., McGraw-Hill, New York, NY, 1966, pp. 626–31.Google Scholar
  46. 46.
    T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Acta Mater., 2011, vol. 59, pp. 1619–31.CrossRefGoogle Scholar
  47. 47.
    H.C. Lee and J. Gurland: Mater. Sci. Eng., 1978, vol. 33, pp. 125–33.CrossRefGoogle Scholar
  48. 48.
    E. Underwood: Quantitative Stereology, Addison-Wesley Publishing Co., Reading, MA, 1970, pp. 99-103.Google Scholar
  49. 49.
    Z. Fan, A. P. Miodownik, and P. Tsakiropoulos: Mater. Sci. Technol., 1993, vol. 9, pp. 1094–1100.CrossRefGoogle Scholar
  50. 50.
    H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: Scr. Mater., 2006, vol. 54, pp. 181–86.CrossRefGoogle Scholar
  51. 51.
    B. Butler, E. Klier, D. Casem, A. Dwivedi, M. Gallagher, and J. Hays: Demonstration of Shear Localization in Ultrafine Grained Tungsten Alloys via Powder Metallurgy Processing Route, Army Research Laboratory, 2012.Google Scholar
  52. 52.
    A.M. Lennon and K.T. Ramesh: Mater. Sci. Eng. A, 2000, vol. 276, pp. 9–21.CrossRefGoogle Scholar
  53. 53.
    Q. Wei, K.T. Ramesh, E. Ma, L.J. Kesckes, R.J. Dowding, V.U. Kazykhanov, and R.Z. Valiev: Appl. Phys. Lett., 2005, vol. 86, pp. 101907–101909.CrossRefGoogle Scholar
  54. 54.
    D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, pp. 3495–3509.CrossRefGoogle Scholar
  55. 55.
    J.P. Ligda, B.E. Schuster, and Q. Wei: Scr. Mater., 2012, vol. 67, pp. 253–56.CrossRefGoogle Scholar
  56. 56.
    J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2261–71.CrossRefGoogle Scholar
  57. 57.
    S.P. Joshi and K.T. Ramesh: Acta Mater., 2008, vol. 56, pp. 282–91.CrossRefGoogle Scholar
  58. 58.
    S.P. Joshi and K.T. Ramesh: Mater. Sci. Eng. A, 2008, vol. 493, pp. 65–70.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Zachary C. Cordero
    • 1
  • Emily L. Huskins
    • 2
  • Mansoo Park
    • 1
  • Steven Livers
    • 3
  • Megan Frary
    • 3
  • Brian E. Schuster
    • 4
  • Christopher A. Schuh
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringMITCambridgeUSA
  2. 2.Oak Ridge Institute for Science and Education Postdoctoral Fellowship ProgramArmy Research LaboratoryAberdeen Proving GroundUSA
  3. 3.Department of Materials Science & EngineeringBoise State UniversityBoiseUSA
  4. 4.Experimental and Computational Penetration Mechanics Team, Weapons and Materials Research DirectorateArmy Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations