Metallurgical and Materials Transactions A

, Volume 45, Issue 9, pp 3800–3805 | Cite as

The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys

  • Marcel A. Kerkove
  • Thomas D. Wood
  • Paul G. Sanders
  • Stephen L. Kampe
  • Douglas Swenson


The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measurements and lower temperature, indirect measurements of these coefficients reported previously in the literature. The temperature-dependent diffusion coefficient equation derived from the data obtained in the present investigation was found to be \( D \left( {{\text{m}}^{2} /{\text{s}}} \right) = \left( {2.34 \pm 2.16} \right) \times 10^{ - 4} \left( {{\text{m}}^{2} /{\text{s}}} \right) { \exp }\left( {\frac{{ - \left( {167 \pm 6} \right) \left( {{\text{kJ}}/{\text{mol}}} \right)}}{RT}} \right). \) Combining these results with data from the literature and fitting all data simultaneously to an Arrhenius relationship yielded the expression \( D \left( {{\text{m}}^{2} /{\text{s}}} \right) = \left( {2.65 \pm 0.84} \right) \times 10^{ - 4} \left( {{\text{m}}^{2} /{\text{s}}} \right) { \exp }\left( {\frac{{ - \left( {168 \pm 2} \right) \left( {{\text{kJ}}/{\text{mol}}} \right)}}{RT}} \right). \) In each equation given above, R is 0.0083144 kJ/mol K, T is in Kelvin, and the uncertainties are ±1 standard error.


Diffusion Coefficient Diffusion Couple Wire Electrical Discharge Machine Interdiffusion Coefficient Tracer Diffusion Coefficient 



The authors are grateful to the Office of Naval Research for funding this work through ONR Grant Number N00014-11-10876, Dr. William Mullins, Program Manager. They also wish to thank Michigan Tech technical staff members: Paul Fraley for assistance in sample encapsulation and heat treating, Ruth Kramer for help and advice related to metallographic sample preparation, and Owen Mills for his knowledge of electron microscopy and EPMA.


  1. 1.
    L.K. Lamikhov and G.V. Samsonov: Tsvetn. Metall., 1964, vol. 8, pp. 79–82.Google Scholar
  2. 2.
    L.A. Willey: U.S. Patent 3,169,181, November 9, 1971.Google Scholar
  3. 3.
    L.S. Toropova, D.G. Eskin, M.L. Kharakterova, and T.V. Dobatkina: Advanced Aluminum Alloys Containing Scandium-Structure and Properties, Taylor and Francis, Abingdon, 1998.Google Scholar
  4. 4.
    J. Royset and N. Ryum: Int. Mater. Rev., 2005, vol. 50, pp. 19–44.CrossRefGoogle Scholar
  5. 5.
    K.E. Knipling: Z. Metallkunde, 2006, vol. 97, pp. 246–65.CrossRefGoogle Scholar
  6. 6.
    V.I. Yelagin, V.V. Sakarov, S.G. Pavlenko, and T.D. Rostova: Phys. Met. Metall., 1985, vol. 60, pp. 88–92.Google Scholar
  7. 7.
    Y.W. Riddle and T.H. Sanders Jr.: Metall. Mater. Trans. A, 2004, vol. 35, pp. 341–50.CrossRefGoogle Scholar
  8. 8.
    M.E. van Dalen, D.C. Dunand, and D.N. Seidman: Acta Mater., 2005, vol. 53, pp. 4225–35.CrossRefGoogle Scholar
  9. 9.
    H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, and K. Marthinsen: Mater. Sci. Eng. A, 2006, vol. 421, pp. 154–60.CrossRefGoogle Scholar
  10. 10.
    R.A. Karnesky, D.C. Dunand, and D.N. Seidman: Acta Mater., 2009, vol. 57, pp. 4022–231.CrossRefGoogle Scholar
  11. 11.
    M.E. van Dalen, R.A. Karnesky, J.R. Cabotaje, D.C. Dunand, and D.N. Seidman: Acta Mater., 2009, vol. 57, pp. 4081–89.CrossRefGoogle Scholar
  12. 12.
    Y. Harada and D.C. Dunand: Mater. Sci. Eng. A, 2002, vols. 329–331, pp. 686–95.CrossRefGoogle Scholar
  13. 13.
    Y. Harada and D.C. Dunand: Intermetallics, 2009, vol. 17, pp. 17–24.CrossRefGoogle Scholar
  14. 14.
    S.-I. Fujikawa: Defect Diffus. Forum, 1997, vols. 143–147, pp. 115–20.CrossRefGoogle Scholar
  15. 15.
    E.A. Marquis and D.N. Seidman: Acta Mater., 2001, vol. 49, pp. 1909–919.CrossRefGoogle Scholar
  16. 16.
    C. Watanabe, T. Kondo, and R. Monzen: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3003–008.CrossRefGoogle Scholar
  17. 17.
    C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.Google Scholar
  18. 18.
    I.M. Lifshitz and V.V. Slyozov: Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.CrossRefGoogle Scholar
  19. 19.
    H.A. Calderon, P.W. Vorhees, J.L. Murray, and G. Kostorz: Acta Metall. Mater., 1994, vol. 42, pp. 991–1000.CrossRefGoogle Scholar
  20. 20.
    S. Kim and Y.A. Chang: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1519–24.CrossRefGoogle Scholar
  21. 21.
    L.S. Darken and R.W. Gurry: Physical Chemistry of Metals, McGraw-Hill Book Co., New York, NY, 1953, pp. 437–64.Google Scholar
  22. 22.
    P. Shewmon: Diffusion in Solids, 2nd ed., The Minerals, Metals and Materials Society, Warrendale, PA, 1989, pp.131–48.Google Scholar
  23. 23.
    J. Philibert: Atom Movements: Diffusion and Mass Transport in Solids (Translated by S. J. Rothman), Les Editions de Physique, Les Ulis, France, 1991, pp. 203–47.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Marcel A. Kerkove
    • 1
  • Thomas D. Wood
    • 1
  • Paul G. Sanders
    • 1
  • Stephen L. Kampe
    • 1
  • Douglas Swenson
    • 1
  1. 1.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations