Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 6, pp 2906–2915 | Cite as

A Comparative Study on Hydrogen Diffusion in Amorphous and Crystalline Metals Using a Molecular Dynamics Simulation

  • Byeong-Moon Lee
  • Byeong-Joo LeeEmail author
Article

Abstract

A comparative study on hydrogen diffusion in amorphous and simple crystalline structures has been carried out using molecular dynamics simulations. The Cu-Zr bulk metallic glass (BMG) system is selected as the model material and a modified embedded-atom method (MEAM) interatomic potential for the Cu-Zr-H ternary system is developed for the atomistic simulation. It is found that the diffusivity of hydrogen in amorphous alloys is lower than that in open structured crystals but higher than that in close-packed crystals. The hydrogen diffusion in amorphous alloys is strongly hydrogen concentration dependent compared to crystals, increasing as the hydrogen content increases, and the Arrhenius plot of hydrogen diffusion in amorphous alloys shows an upward curvature. The reasons to rationalize all the findings are discussed based on the variety of energy state and migration energy barrier for interstitial sites in amorphous alloys.

Keywords

Amorphous Alloy Arrhenius Plot Bulk Metallic Glass Hydrogen Diffusivity Crystalline Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by the Korea Institute of Science and Technology (2E22742) and the National Research Foundation (Grant No. 2011-0010033).

References

  1. 1.
    M. Ahmadzadeh and B. Cantor: J. Non-Cryst. Solids, 1981, vol. 43, pp. 189–219.Google Scholar
  2. 2.
    R. Kirchheim, F. Sommer, and G. Schluckebier: Acta Metall., 1982, vol. 30, pp. 1059–68.Google Scholar
  3. 3.
    R. Kirchheim: Acta Metall., 1982, vol. 30, pp. 1069–78.Google Scholar
  4. 4.
    P.M. Richards: Phys. Rev. B, 1983, vol. 27, pp. 2059–72.Google Scholar
  5. 5.
    R. Kirchheim and U. Stolz: Acta Metall., 1987, vol. 35, pp. 281–91.Google Scholar
  6. 6.
    J.-J. Lin and T.-P. Perng: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 191–96.Google Scholar
  7. 7.
    N. Eliaz and D. Eliezer: Adv. Perform. Mater., 1999, vol. 6, pp. 5–31.Google Scholar
  8. 8.
    N. Eliaz and D. Eliezer: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2517–26.Google Scholar
  9. 9.
    S. Hao and D.S. Sholl: Energy Environ. Sci., 2008, vol. 1, pp. 175–83.Google Scholar
  10. 10.
    S. Hao and D.S. Sholl: J. Membr. Sci., 2010, vol. 350, pp. 402–09.Google Scholar
  11. 11.
    J.J. Rush, J.M. Rowe, and A.J. Maeland: J. Phys. F Met. Phys., 1980, vol. 10, pp. L283–85.Google Scholar
  12. 12.
    Y.S. Lee and D.A. Stevenson: J. Non-Cryst. Solids, 1985, vol. 72, pp. 249–66.Google Scholar
  13. 13.
    J.J. Kim and D.A. Stevenson: J. Non-Cryst. Solids, 1988, vol. 101, pp. 187–97.Google Scholar
  14. 14.
    Y. Sakamoto, K. Takao, and K. Baba: Mater. Sci. Eng., 1988, vol. 97, pp. 437–40.Google Scholar
  15. 15.
    J.-J. Lin and T.-P. Perng: Acta Metall. Mater., 1991, vol. 39, pp. 1101–09.Google Scholar
  16. 16.
    D.S. dos Santos and P.E.V. de Miranda: Int. J. Hydrogen Energy, 1998, vol. 23, pp. 1011–17.Google Scholar
  17. 17.
    N.H. Goo and K.S. Lee: Int. J. Hydrogen Energy, 2002, vol. 27, pp. 433–38.Google Scholar
  18. 18.
    R.C. Bowman Jr., A.J. Maeland, and W.-K. Rhim: Phys. Rev. B, 1982, vol. 26, pp. 6362–78.Google Scholar
  19. 19.
    R.C. Bowman Jr., A.J. Maeland, and W.L. Johnson: Solid State Commun., 1983, vol. 47, pp. 779–82.Google Scholar
  20. 20.
    Y. Limoge and J.L. Bocquet: Acta Metall., 1988, vol. 36, pp. 1717–22.Google Scholar
  21. 21.
    A.B. Gritsenko, L.A. Andreyev, and D.K. Belashchenko: Phys. Met. Metall., 1989, vol. 67, pp. 136–42.Google Scholar
  22. 22.
    N. Eliaz, D. Fuks, and D. Eliezer: Mater. Lett., 1999, vol. 39, pp. 255–59.Google Scholar
  23. 23.
    N. Eliaz, D. Fuks, and D. Eliezer: Acta Mater., 1999, vol. 47, pp. 2981–89.Google Scholar
  24. 24.
    P.K. Hung, P.N. Nguyen, and T.V. Mung: J. Non-Cryst. Solids, 2010, vol. 356, pp. 1262–66.Google Scholar
  25. 25.
    Y. Limoge and J.L. Bocquet: Phys. Rev. Lett., 1990, vol. 65, pp. 60–3.Google Scholar
  26. 26.
    K. Mussawisade, T. Wichmann, and K.W. Kehr: J. Phys. Condens. Matter., 1997, vol. 9, pp. 1181–89.Google Scholar
  27. 27.
    S. Hara, K. Sakaki, N. Itoh, H.-M. Kimura, K. Asami, and A. Inoue: J. Membr. Sci., 2000, vol. 164, pp. 289–94.Google Scholar
  28. 28.
    S. Hara, N. Hatakeyama, N. Itoh, H.-M. Kimura, and A. Inoue: J. Membr. Sci., 2003, vol. 211, pp. 149–56.Google Scholar
  29. 29.
    S.-M. Kim, D. Chandra, N.K. Pal, M.D. Dolan, W.-M. Chien, A. Talekar, J. Lamb, S.N. Paglieri, and T.B. Flanagan: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 3904–13.Google Scholar
  30. 30.
    Y.-I. Wang, J.-Y. Suh, Y.-S. Lee, J.-H. Shim, E. Fleury, Y.W. Cho, and S.-U. Koh: J. Membr Sci., 2013, vol. 436, pp. 195–201.Google Scholar
  31. 31.
    J.W. Phair and R. Donelson: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 5657–74.Google Scholar
  32. 32.
    M.D. Dolan, N.C. Dave, A.Y. Ilyushechkin, L.D. Morpeth, and K.G. McLennan: J. Membr. Sci., 2006, vol. 285, pp. 30–55.Google Scholar
  33. 33.
    N.W. Ockwig and T.M. Nenoff: Chem. Rev., 2007, vol. 107, pp. 4078–4110.Google Scholar
  34. 34.
    S.N. Paglieri and J.D. Way: Sep. Purif. Methods, 2002, vol. 31, pp. 1–169.Google Scholar
  35. 35.
    A.S. Clarke and J.D. Wiley: Phys. Rev. B, 1987, vol. 35, pp. 7350–56.Google Scholar
  36. 36.
    Y. Takagi and K. Kawamura: Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 677–85.Google Scholar
  37. 37.
    F.K. Hung and D.K. Belashchenko: Russ. Metall., 1990, vol. 3, pp. 201–05.Google Scholar
  38. 38.
    A. Santoro, A. Maeland, and J.J. Rush: Acta Cryst. B, 1978, vol. 34, pp. 3059–62.Google Scholar
  39. 39.
    F.E. Spada, R.C. Bowman Jr., and J.S. Cantrell: J. Less-Common Met., 1987, vol. 129, pp. 197–205.Google Scholar
  40. 40.
    O.J. Kwon, Y.C. Kim, K.B. Kim, Y.K. Lee, and E. Fleury; Met. Mater. Int., 2006, vol. 12, pp. 207–12.Google Scholar
  41. 41.
    E.M. Carvalho and I.R. Harris: J. Mater. Sci., 1980, vol. 15, pp. 1224–30.Google Scholar
  42. 42.
    M.N. Nevitt and J.W. Downey: Trans. TMS-AIME, 1962, vol. 224, pp. 195–96.Google Scholar
  43. 43.
    W.Y. Wang, S.L. Shang, H.Z. Fang, H. Zhang, Y. Wang, S.N. Mathaudhu, X.D. Hui, and Z.-K. Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3471–80.Google Scholar
  44. 44.
    C.P. Flynn and A.M. Stoneham: Phys. Rev. B, 1970, vol. 1, pp. 3966–78.Google Scholar
  45. 45.
    B.-J. Lee and M.I. Baskes: Phys. Rev. B, 2000, vol. 62, pp. 8564–67.Google Scholar
  46. 46.
    B.-J. Lee, M.I. Baskes, H.C. Kim, and Y.K. Cho: Phys. Rev. B, 2001, vol. 64, p. 184102.Google Scholar
  47. 47.
    B.-J. Lee, J.-H. Shim, and M.I. Baskes: Phys. Rev. B, 2003, vol. 68, p. 144112.Google Scholar
  48. 48.
    B.-J. Lee, W.-S. Ko, H.-K. Kim, and E.-H. Kim: CALPHAD, 2010, vol. 34, pp. 510–22.Google Scholar
  49. 49.
    M.I. Baskes: Phys. Rev. B, 1992, vol. 46, pp. 2727–42.Google Scholar
  50. 50.
    M.S. Daw and M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, pp. 1285–88.Google Scholar
  51. 51.
    M.S. Daw and M.I. Baskes: Phys. Rev. B, 1984, vol. 29, pp. 6443–53.Google Scholar
  52. 52.
    S.M. Foiles, M.I. Baskes, and M.S. Daw: Phys. Rev. B, 1986, vol. 33, pp. 7983–91.Google Scholar
  53. 53.
    Y.-M. Kim, B.-J. Lee, and M.I. Baskes: Phys. Rev. B, 2006, vol. 74, p. 014101.Google Scholar
  54. 54.
    Y.-M. Kim and B.-J. Lee: J. Mater. Res., 2008, vol. 23, pp. 1095–1104.Google Scholar
  55. 55.
    B.-J. Lee and J.-W. Jang: Acta Mater., 2007, vol. 55, pp. 6779–88.Google Scholar
  56. 56.
    W.-S. Ko, J.-H. Shim, and B.-J. Lee: J. Mater. Res., 2011, vol. 26, pp. 1552–60.Google Scholar
  57. 57.
    J.-H. Shim, Y.-S. Lee, E. Fleury, Y.W. Cho, W.-S. Ko, and B.-J. Lee: CALPHAD, 2011, vol. 35, pp. 302–07.Google Scholar
  58. 58.
    J.H. Rose, J.R. Smith, F. Guinea, and Ferrante: Phys. Rev. B, 1984, vol. 29, pp. 2963–69.Google Scholar
  59. 59.
    M.I. Baskes: Mater. Chem. Phys., 1997, vol. 50, pp. 152–58.Google Scholar
  60. 60.
    H.-K. Kim, W.-S. Jung, and B.-J. Lee: Acta Mater., 2009, vol. 57, pp. 3140–47.Google Scholar
  61. 61.
    W. Eichenauer and A. Pebler: Z. Metallkd., 1957, vol. 48, pp. 373–78.Google Scholar
  62. 62.
    W.Eichenauer, W.Löser, and H.Witte: Z. Metallkd., 1965, vol. 56, pp. 287–93.Google Scholar
  63. 63.
    C.L. Thomas: Trans. TMS-AIME, 1967, vol. 239, pp. 485–90.Google Scholar
  64. 64.
    R.B. McLellan: J. Phys. Chem. Solids, 1973, vol. 34, pp. 1137–41.Google Scholar
  65. 65.
    W.R. Wampler, T. Schober, and B. Lengeler: Philos. Mag., 1976, vol. 34, pp. 129–41.Google Scholar
  66. 66.
    L. Katz, M. Guinan, and R.J. Borg: Phys. Rev. B, 1971, vol. 4, pp. 330–41.Google Scholar
  67. 67.
    J.P. Bugeat and E. Ligeon: Phys. Lett. A, 1979, vol. 71, pp. 93–96.Google Scholar
  68. 68.
    Y. Sakamoto and K. Takao: J. Jpn. Inst. Met., 1982, vol. 46, pp. 285–90.Google Scholar
  69. 69.
    T. Ishikawa and R.B. McLellan: J. Phys. Chem. Solids, 1985, vol. 46, pp. 445–47.Google Scholar
  70. 70.
    P. Dantzer, W. Luo, T.B. Flanagan, and J.D. Clewley: Metall. Trans. A, 1993, vol. 24A, pp. 1471–79.Google Scholar
  71. 71.
    C. Domain, R. Besson, and A. Legris: Acta Mater., 2002, vol. 50, pp. 3513–26.Google Scholar
  72. 72.
    E.A. Gulbransen and K.F. Andrew: Trans. AIME, 1955, vol. 203, pp. 136–44.Google Scholar
  73. 73.
    D.G. Westlake: J. Nucl. Mater., 1962, vol. 7, pp. 346–47.Google Scholar
  74. 74.
    F. Ricca and T.A. Giorgi: J. Phys. Chem., 1967, vol. 71, pp. 3627–31.Google Scholar
  75. 75.
    Y.V. Vinokurov and P.M. Mogutnov: Russ. J. Phys. Chem., 1979, vol. 53, pp. 1273–76.Google Scholar
  76. 76.
    Y. Ohta, S. Naito, M. Mabuchi, and T. Hashino: J Phys F Met. Phys., 1986, vol. 16, pp. 1173–79.Google Scholar
  77. 77.
    Y. Udagawa, M. Yamaguchi, H. Abe, N. Sekimura, and Y. Fuketa: Acta Mater., 2010, vol. 58, pp. 3927–38.Google Scholar
  78. 78.
    C.M. Schwartz and M.W. Mallett: Trans. ASM, 1954, vol. 46, pp. 640–54.Google Scholar
  79. 79.
    E.A. Gulbransen and K.F. Andrew: J. Electrochem. Soc., 1954, vol. 101, pp. 560–66.Google Scholar
  80. 80.
    M.W. Mallett and W.M. Albrecht: J. Electrochem. Soc., 1957, vol. 104, pp. 142–46.Google Scholar
  81. 81.
    M. Someno: J. Jpn. Inst. Met., 1960, vol. 24, pp. 249–53.Google Scholar
  82. 82.
    J.J. Kearns: J. Nucl. Mater., 1972, vol. 43, pp. 330–38.Google Scholar
  83. 83.
    F.M. Mazzolai and J. Ryll-Nardzewski: J. Less-Common Met., 1976, vol. 49, pp. 323–27.Google Scholar
  84. 84.
    S. Ukita, H. Ohtani, and M. Hasebe: J. Jpn. Inst. Met., 2007, vol. 71, pp. 721–29.Google Scholar
  85. 85.
    A. Sieverts and A. Gotta: Ann. Chem. Liebigs, 1927, vol. 453, pp. 289–97.Google Scholar
  86. 86.
    J.A. Goedkoop and A.F. Andresen: Acta Cryst., 1955, vol. 8, pp. 118–19.Google Scholar
  87. 87.
    J.C. Warf: J. Inorg. Nucl. Chem., 1966, vol. 28, pp. 1031–33.Google Scholar
  88. 88.
    M. Tkacz, S. Majchrzak, and B. Baranowski: Z. Phys. Chem., 1989, vol. 163, pp. 467–68.Google Scholar
  89. 89.
    R. Burtovyy, E. Utzig, and M. Tkacz: Thermochim. Acta, 2000, vol. 363, pp. 157–63.Google Scholar
  90. 90.
    R. Quijano, R. de Coss, and D.J. Singh: Phys. Rev. B, 2009, vol. 80, p. 184103.Google Scholar
  91. 91.
    R.C. Bowman Jr., B.D. Craft, J.S. Cantrell, and E.L. Venturini: Phys. Rev. B, 1985, vol. 31, pp. 5604–15.Google Scholar
  92. 92.
    H.E. Flotow and D.W. Osborne: J. Chem. Phys., 1961, vol. 34, pp. 1418–25.Google Scholar
  93. 93.
    D.R. Fredrickson, R.L. Nuttall, H.E. Flotow, and W.N. Hubbard: J. Phys. Chem., 1963, vol. 67, pp. 1506–69.Google Scholar
  94. 94.
    A.G. Turnbull: Aust. J. Chem., 1964, vol. 17, pp. 1063–71.Google Scholar
  95. 95.
    W. Wolf and P. Herzig: J. Phys. Condens. Matter., 2000, vol. 12, pp. 4535–51.Google Scholar
  96. 96.
    O.M. Barabash and Y.N. Koval: Phase Diagrams of Binary Copper Alloys, P.R. Subramanian, ed., ASM International, Materials Park, 1994, p. 199.Google Scholar
  97. 97.
    E. Zuzek, J.P. Abriata, A. San-Martin, and F.D. Manchester: Phase Diagrams of Binary Hydrogen Alloys, F.D. Manchester, ed., ASM International, Materials Park, 2000, pp. 309–22.Google Scholar
  98. 98.
    L.E. Sutton, ed.: Table of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956–1959, Special publication No. 18, p. S6s, The Chemical Society, London, 1965.Google Scholar
  99. 99.
    G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558–61.Google Scholar
  100. 100.
    G. Kresse and J. Hafner: Phys. Rev. B, 1994, vol. 49, pp. 14251–69.Google Scholar
  101. 101.
    G. Kresse and J. Furthmüller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.Google Scholar
  102. 102.
    G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.Google Scholar
  103. 103.
    J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.Google Scholar
  104. 104.
    P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–79.Google Scholar
  105. 105.
    G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.Google Scholar
  106. 106.
    K.-H. Kang, K.-W. Park, J.-C. Lee, E. Fleury, and B.-J. Lee: Acta Mater., 2011, vol. 59, pp. 805–11.Google Scholar
  107. 107.
    J.L. Finney: Nature, 1977, vol. 266, pp. 309–14.Google Scholar
  108. 108.
    P. Kowalczyk, P.A. Gauden, A.P. Terzyk, and S.K. Bhatia: Langmuir, 2007, vol. 23, pp. 3666–72.Google Scholar
  109. 109.
    T.E. Markland, S. Habershon, and D.E. Manolopoulos: J. Chem. Phys., 2008, vol. 128, p. 194506.Google Scholar
  110. 110.
    F. Calvo and D. Costa: J. Chem. Theory Comput., 2010, vol. 6, pp. 508–16.Google Scholar
  111. 111.
    B. Bhatia and D.S. Sholl: Phys. Rev. B, 2005, vol. 72, p. 224302.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations