Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 3, pp 1362–1370 | Cite as

High-Temperature Oxidation Resistance of a Nanoceria Spray-Coated 316L Stainless Steel Under Short-Term Air Exposure

  • Hugo F. LopezEmail author
  • Humberto Mendoza
  • Ben Church
Article

Abstract

Nanoceria coatings using a spray method were implemented on a 316L stainless steel (SS). Coated and uncoated coupons were exposed to dry air at 1073 K to 1273 K (800 °C to 1000 °C) for short time periods (up to 24 hours) and in situ measurements of oxidation were carried out using a highly sensitive thermogravimetric balance. From the experimental outcome, activation energies were determined in both, coated and uncoated 316 SS coupons. The estimated exhibited activation energies for oxidation in the coated and uncoated conditions were 174 and 356 kJ/mol, respectively. In addition, the developed scales were significantly different. In the coated steel, the dominant oxide was an oxide spinel (Fe, Mn)3O4 and the presence of Fe2O3 was sharply reduced, particularly at 1273 K (1000 °C). In contrast, no spinel was found in the uncoated 316L SS, and Fe2O3 was always present in the scale at all the investigated oxidation temperatures. The coated steels developed a highly adherent fine-grained scale structure. Apparently, the nanoceria particles enhanced nucleation of the newly formed scale while restricting coarsening. Coarse grain structures were found in the uncoated steels with scale growth occurring at grain ledges. Moreover, the oxidation rates for the coated 316L SS were at least an order of magnitude lower than those exhibited by the steel in the uncoated condition. The reduction in oxidation rates is attributed to a shift in the oxidation mechanism from outward cation diffusion to inward oxygen diffusion.

Keywords

Oxide Scale 316L Stainless Steel Coated Steel Scale Growth Chromia Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Birks, G. H. Meier, and F. S. Pettit: Introduction to the high temperature oxidation of Metals. Second Edition, Cambridge University Press, London, 2006. CrossRefGoogle Scholar
  2. 2.
    T. Maruyama, M. Yoshiba, K. Kurokawa, Y. Kawahara and N. Otsuka, Mat. Sci. Forum, vol. 696, 2011, pp. 1-440. CrossRefGoogle Scholar
  3. 3.
    R. A. Rapp, Metall. Trans. B, vol. 15B, 1984, pp. 105-112. Google Scholar
  4. 4.
    P. Kofstad: High Temperature Oxidation of Metals. Wiley, New York, NY, 1966.Google Scholar
  5. 5.
    P. Kofstad, K. P. Lillerud, J. Electrochem. Soc. Vol. 127, 1980, pp. 2410-2419. CrossRefGoogle Scholar
  6. 6.
    A. C. S. Sabioni, A. M. Huntz, F. Millot, and C. Monty, Philos. Mag. A, 66, 1992, pp. 361-74.CrossRefGoogle Scholar
  7. 7.
    G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materialia, vol. 54, 2006, pp. 3917-3922. CrossRefGoogle Scholar
  8. 8.
    C.E.R de Carvalho, G.M. da Costa, A.B. Cota, and E. H. Rossi, Mater. Res., 9, 2006, pp. 393–97.Google Scholar
  9. 9.
    L. Mikkelsen,P. H. Larsen and S. Linderoth, J. Thermal Analysis and Calorimetry, vol. 64, 2001, pp. 879-886. CrossRefGoogle Scholar
  10. 10.
    A. Claret, S. Sabioni, A. Huntz, E. C. da Luz, M. Mantel and C. Haut, Mat. Res. vol. 6, 2003, pp. 179-185. CrossRefGoogle Scholar
  11. 11.
    A. A. Moosa, M. K. Abbas and R. Mohammed, Eng. & Tech., vol. 25, 2007, pp. 918-939. Google Scholar
  12. 12.
    V. Viswanathan, R. Filmalter, S. Patil, S. Deshpande and S. Seal, J. Am. Ceram. Soc., vol. 90, 2007, pp. 870-877. CrossRefGoogle Scholar
  13. 13.
    F. Czerwinski and J.A. Szpunar, J. Sol Gel Sci. Technol. 9, 1997, pp 103-114.Google Scholar
  14. 14.
    F. Czerwinski and J. A. Szpunar, Thin Solid Films, vol. 289, 1996, pp. 21319. CrossRefGoogle Scholar
  15. 15.
    S. Roure, E. Czerwinski and A. Petric, Oxid. Met., vol. 42, 1994, pp. 75-102. Google Scholar
  16. 16.
    F. Czerwinski and W.W. Smeltzer, Oxid. Met. vol. 40, 1993, pp. 503-527.CrossRefGoogle Scholar
  17. 17.
    R. Thanneeru, S. Patil, S. Deshpande and S. Seal, Acta Materialia, vol. 55, 2007, pp. 3457-3466. CrossRefGoogle Scholar
  18. 18.
    D. P. Moon and M. J. Bennett, Mater. Sci. Forum, vol. 43, 1989, pp. 269-298. CrossRefGoogle Scholar
  19. 19.
    E. A. Polman, T. Fransen and P. J. Gellings, J. Phys. Condens. Matter, vol. 1, 1989, pp. 4497-4510. CrossRefGoogle Scholar
  20. 20.
    L.B. Pfeil, U.K. Patent No. 459848, 1937.Google Scholar
  21. 21.
    J. Stringer, Mater. Sci. Eng. A, vol.120, 1989, pp. 12937. CrossRefGoogle Scholar
  22. 22.
    D. P. Moon, Mater. Sci. Technol. vol. 5, 1989, pp. 754-60. Google Scholar
  23. 23.
    B. A. Pint, Oxid. Met.,vol. 45, 1996, pp. 1-37. CrossRefGoogle Scholar
  24. 24.
    Y. Saito, B. Onay, T. Maruyama, J. Phys. IV, vol. 3, 1993, pp. 217-225. Google Scholar
  25. 25.
    S. Chevalier and J. P. Larpin, Acta Materialia, vol. 50, 2002, pp. 3107-3116. CrossRefGoogle Scholar
  26. 26.
    T.A. Ramanarayanan, J.D. Mumford, C.M. Chun, and R.A. Petkovic, Solid State Ionics vol .136-137, 2000, pp. 83-90.CrossRefGoogle Scholar
  27. 27.
    R.J. Hussey, P. Papajacovouv, J. Shen, D.F. Mitchell, and M.J. Graham, Mater. Sci. Eng. A, vol. 120A, 1989, pp. 147-151.CrossRefGoogle Scholar
  28. 28.
    S. Seal, S. K. Bose and S. K. Roy, Oxid. Met., vol. 41, 1994, 139-178. CrossRefGoogle Scholar
  29. 29.
    S. Seal, S.K. Roy, S.K. Bose, and S.C. Kuiry, JOM 52 (1), 2000, 163–77.Google Scholar
  30. 30.
    H.F. Lopez and H. Mendoza-Del-Angel: Symposium 5 Advanced Materials, XIX International Congress of Materials Research, August 15–19, Cancun 2010, vol. 1276, pp. 123–28.Google Scholar
  31. 31.
    Z. Wu, Lin Guo, H. Li, R. E. Benfield, Q. Yang, D. Grandjean, Q. Liand, and H. Zhu, J. Phys. Condens. Matter, vol 13, 2001, pp. 5269-5284.CrossRefGoogle Scholar
  32. 32.
    S. Patil, S. C. Kuiry, S. Seal and R. Vanfleet, J. Nanopart. Res. vol. 4, 2002, pp. 433-438. CrossRefGoogle Scholar
  33. 33.
    H.F. Lopez: MRS Conference Proceedings, Symposium 5 Advanced Materials, XVIII International Congress of Materials Research, August 16–20, Cancun 2009, vol. 1243, 21–28.Google Scholar
  34. 34.
    H. Zhang: Ph.D. Dissertation, University of Wisconsin-Milwaukee, 2007.Google Scholar
  35. 35.
    S. Tsunekawa, K. Ishikawa, Z. Q. Li, Y. Kawazoe and A. Kasuya,Phys. Rev. Lett., vol. 85, 2000, pp. 3440-3443. CrossRefGoogle Scholar
  36. 36.
    X. D. Zhou and W. Huebner, Appl. Phys. Lett., vol 79, 2001, pp. 3512-14. CrossRefGoogle Scholar
  37. 37.
    E.M. Levin, R. Sidney Roth, C.R. Robbins, and H.F. McMurdie, eds.: Phase Diagrams for Ceramists, vol. 5, The American Ceramic Society, Columbus, OH, 1983.Google Scholar
  38. 38.
    N. Patibandla, T. A. Ramanarayanan and F. Cosandey, J. Electrochem. Soc. vol. 138, 1991, pp. 2176-2184. CrossRefGoogle Scholar
  39. 39.
    H. Nagai and M. Okabayashi, J. Trans. Japan Inst. Metals vol. 22, 1982, pp. 101-08. Google Scholar
  40. 40.
    S.R. Challa, A. Delariva, and A.K. Datye: 22th North Mtg., Detroit, MI, June 5–10, 2011.Google Scholar
  41. 41.
    C.T. Campbell, S.C. Parker, and D.R. Starr, Science, vol 298, 2002, pp. 811-814.CrossRefGoogle Scholar
  42. 42.
    P. Kofstad: High Temperature Corrosion, Elsevier, London, 1988, pp. 1-55. Google Scholar
  43. 43.
    D. M. Duffy and P. W. Tasker, Phil. Mag., vol 54, 1986, pp. 759-77. CrossRefGoogle Scholar
  44. 44.
    A.C.S. Sabioni, A.M. Huntz, F. Millot, and C. Monty, Philos. Mag. A, vol. 66, 1992, pp. 351-360.CrossRefGoogle Scholar
  45. 45.
    A. C. S. Sabioni, B. Lesage, A. M. Huntz, J. C. Pivin, and C. Monty, Philos. Mag. A, vol. 66, 1992, pp. 333-350.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, CEASUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations