Metallurgical and Materials Transactions A

, Volume 45, Issue 2, pp 785–797 | Cite as

Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application

  • Erfan Zalnezhad
  • Saeid Baradaran
  • A. R. Bushroa
  • Ahmed A. D. Sarhan
Article

Abstract

With the intention of improving the mechanical properties of Ti-6Al-4V, samples were first coated with pure titanium using the physical vapor deposition (PVD) magnetron sputtering technique. The Taguchi optimization method was used to attain a higher coating on substrate adhesion. Second, pure titanium-coated samples with higher adhesion were anodized to generate TiO2 nanotubes. Next, the TiO2-coated specimens were heat treated at annealing temperatures of 753.15 K and 923.15 K (480 °C and 650 °C). The XRD results indicate that the varying heat treatment temperatures produced different phases, namely, anatase [753.15 K (480 °C)] and rutile [923.15 K (650 °C)]. Finally, the coated samples’ mechanical properties (surface hardness, adhesion, and fretting fatigue life) were investigated. The fretting fatigue lives of TiO2-coated specimens at 753.15 K and 923.15 K (480 °C and 650 °C) annealing temperatures were significantly enhanced compared to uncoated samples at low and high cyclic fatigue. The results also indicate that TiO2-coated samples heat treated at an annealing temperature of 753.15 K (480 °C) (anatase phase) are more suitable for increasing fretting fatigue life at high cyclic fatigue (HCF), while at low cyclic fatigue, the annealing temperature of 923.15 K (650 °C) seemed to be more appropriate. The fretting fatigue life enhancement of thin-film TiO2 nanotubular array-coated Ti-6Al-4V is due to the ceramic nature of TiO2 which produces a hard surface as well as a lower coefficient of friction of the TiO2 nanotube surface that decreases the fretting between contacting components, namely, the sample and friction pad surfaces.

Notes

Acknowledgments

The authors acknowledge the financial support under the Research Grant with No.: UM. TNC2/IPPP/UPGP/261/15 (BK030-2013) from the University of Malaya, Malaysia.

References

  1. 1.
    M. Niinomi, Metall. Mater. Trans A, 32A (2001) pp. 477-86.Google Scholar
  2. 2.
    M. Niinomi, Mater. Trans., Vol. 49, No. 10 (2008) pp. 2170-78.CrossRefGoogle Scholar
  3. 3.
    M. Niinomi: Biomaterials, 24 (2003) 2673–83.CrossRefGoogle Scholar
  4. 4.
    A.P. Tomsia, E. Saiz, J. Song, C.R. Bertozzi, Adv. Eng. Mater. 7(11) (2005) 999–1004.CrossRefGoogle Scholar
  5. 5.
    G.B. de Souza, G.G. de Lima, N.K. Kuromoto, P. Soares, C.M. Lepienski, C.E. Foerster, A. Mikowski, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 796–806.CrossRefGoogle Scholar
  6. 6.
    G.B. de Souza, C.M. Lepienski, C.E. Foerster, N.K. Kuromoto, P. Soares, H.A. Ponte, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 756–65.CrossRefGoogle Scholar
  7. 7.
    S.J. Ding, C.P. Ju, J.H.C. Lin, J. Biomed. Mater. Res. A 47/4 (1999) 551–63.CrossRefGoogle Scholar
  8. 8.
    D.M. Ebenstein, L.A. Pruitt, Nano Today 1/3 (2006) 26–33.CrossRefGoogle Scholar
  9. 9.
    X. Fan, Y. Zhang, P. Xiao, F. Hu, H. Zhang, J. Chem. Phys. 20 (2007) 753–58.Google Scholar
  10. 10.
    M. Farooq, Z.H. Lee, J. Korean Phys. Soc. 40/3 (2002) 511–15.Google Scholar
  11. 11.
    S. Gangopadhyay, R. Acharya, A.K. Chattopadhyay, S. Paul, Vacuum 84/6 (2010) 843–50.CrossRefGoogle Scholar
  12. 12.
    A. Kar, K. Raja, M. Misra, Surf. Coat. Technol. 201/6 (2006) 3723–31.CrossRefGoogle Scholar
  13. 13.
    P. Kelly, R. Arnell, Vacuum 56/3 (2000) 159–72.CrossRefGoogle Scholar
  14. 14.
    A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono, P. Schmuki, Acta Biomater. 5/6 (2009) 2322–30.CrossRefGoogle Scholar
  15. 15.
    K.S. Lee, I.S. Park, Scripta Mater. 48/6 (2003) 659–63.CrossRefGoogle Scholar
  16. 16.
    S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, Ahmed A.D. Sarhan, Y. Alias (2013) J. Mech. Behav. Biomed. 20, 272–82.CrossRefGoogle Scholar
  17. 17.
    T. Sultana, G.L. Georgiev, R.J. Baird, G.W. Auner, G. Newaz, R. Patwa, H.J. Herfurth, J. Mech. Behav. Biomed. 2 (2009) 237–42.CrossRefGoogle Scholar
  18. 18.
    S. Li, J. Yin, G. Zhang, Sci. China 53/5 (2010) 1068–73.Google Scholar
  19. 19.
    S.Q. Liu, Bioregenerative Engineering: Principles and Applications, Wiley, Hoboken, NJ, (2007).CrossRefGoogle Scholar
  20. 20.
    J. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, J. Electroanal. Chem. 621/2 (2008) 254–66.CrossRefGoogle Scholar
  21. 21.
    M. Mayo, R. Siegel, A. Narayanasamy, W. Nix, J. Mater. Res. 5/05 (1990) 1073–82.CrossRefGoogle Scholar
  22. 22.
    V. Nelea, C. Morosanu, M. Iliescu, I. Mihailescu, Surf. Coat. Technol. 173/2 (2003) 315–22.CrossRefGoogle Scholar
  23. 23.
    J.M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki: Electrochem. Commun., 2005, vol. 7 (11), pp. 1133–37.Google Scholar
  24. 24.
    M. Metikoš-Hukovič, A. Kwokal, and J. Piljac: Biomaterials, 2003, vol. 24, pp. 3765–75.Google Scholar
  25. 25.
    ISO Standard: Metallic Materials—Rotating Bar Bending Fatigue Testing, ISO International, 2010.Google Scholar
  26. 26.
    J.A. Ghani, I.A. Choudhury, H.H. Hassan, J. Mater. Process. Technol. 145/1 (2004) 84–92.CrossRefGoogle Scholar
  27. 27.
    J.A. Toque, M.K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, I. Sopyan, J. Mech. Behav. Biomed. Mater. 3/4 (2010) 324–30.CrossRefGoogle Scholar
  28. 28.
    K. Singh, N. Krishnamurthy, A.K. Suri, Tribol. Int. 50/0 (2012) 16–25.CrossRefGoogle Scholar
  29. 29.
    G. Crawford, N. Chawla, J. Houston, J. Mech. Behav. Biomed. Mater. 2/6 (2009) 580–87.CrossRefGoogle Scholar
  30. 30.
    Z. Hashin, B.W. Rosen, J. Appl. Mech., 31 (1964), pp. 223–32.CrossRefGoogle Scholar
  31. 31.
    Y. Al-Khatatbeh, K.K. M. Lee, B. Kiefer, J. Phys. Chem. C. 116 (2012) 21635–39.CrossRefGoogle Scholar
  32. 32.
    W.Y. Chang, T.H. Fang, Z.W. Chiu, Y.J. Hsiao, L.W. Ji, Microporous Mesoporous Mater. 145/1 (2011) 87–92.CrossRefGoogle Scholar
  33. 33.
    A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri, K. Koumoto (2008) J. Mater. Sci. 43(17), 5924–29.CrossRefGoogle Scholar
  34. 34.
    M.R. VanLandingham, J. Res. Natl Inst. Stand. Technol. 108/4 (2003) 249–65.CrossRefGoogle Scholar
  35. 35.
    T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, ACS Nano 3/10 (2009) 3098–3102.CrossRefGoogle Scholar
  36. 36.
    B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, S.V. Joshi, G. Sundararajan (2008) Surf. Coat. Technol. 202(8) 1462–69.CrossRefGoogle Scholar
  37. 37.
    Y. Sun, K. Yan, G. Wang, W. Guo, T. Ma, J. Phys. Chem. C. 115 (2011), 12844–49.CrossRefGoogle Scholar
  38. 38.
    G. Majzoobi, M. Jaleh, Mater. Sci. Eng. A 452 (2007) 673–81.CrossRefGoogle Scholar
  39. 39.
    X. Zhang, D. Liu, Trans. Nonferrous Mater. Soc. China 19/3 (2009) 557.CrossRefGoogle Scholar
  40. 40.
    L. Pazos, P. Corengia, H. Svoboda, J. Mech. Behav. Biomed. Mater. 3/6 (2010) 416–24.CrossRefGoogle Scholar
  41. 41.
    E. Zalnezhad, A.A.D. Sarhan, M. Hamdi (2012) Int. J. Precision Eng. Manuf. 13, 1453–59.CrossRefGoogle Scholar
  42. 42.
    A. Vadiraj, M. Kamaraj, Tribol. Int. 40/1 (2007) 82–88.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Erfan Zalnezhad
    • 1
    • 2
  • Saeid Baradaran
    • 1
  • A. R. Bushroa
    • 1
  • Ahmed A. D. Sarhan
    • 1
    • 3
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Faculty of EngineeringIslamic Azad UniversityChalous BranchIran
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringAssiut UniversityAssiutEgypt

Personalised recommendations