Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application
- 545 Downloads
- 13 Citations
Abstract
With the intention of improving the mechanical properties of Ti-6Al-4V, samples were first coated with pure titanium using the physical vapor deposition (PVD) magnetron sputtering technique. The Taguchi optimization method was used to attain a higher coating on substrate adhesion. Second, pure titanium-coated samples with higher adhesion were anodized to generate TiO2 nanotubes. Next, the TiO2-coated specimens were heat treated at annealing temperatures of 753.15 K and 923.15 K (480 °C and 650 °C). The XRD results indicate that the varying heat treatment temperatures produced different phases, namely, anatase [753.15 K (480 °C)] and rutile [923.15 K (650 °C)]. Finally, the coated samples’ mechanical properties (surface hardness, adhesion, and fretting fatigue life) were investigated. The fretting fatigue lives of TiO2-coated specimens at 753.15 K and 923.15 K (480 °C and 650 °C) annealing temperatures were significantly enhanced compared to uncoated samples at low and high cyclic fatigue. The results also indicate that TiO2-coated samples heat treated at an annealing temperature of 753.15 K (480 °C) (anatase phase) are more suitable for increasing fretting fatigue life at high cyclic fatigue (HCF), while at low cyclic fatigue, the annealing temperature of 923.15 K (650 °C) seemed to be more appropriate. The fretting fatigue life enhancement of thin-film TiO2 nanotubular array-coated Ti-6Al-4V is due to the ceramic nature of TiO2 which produces a hard surface as well as a lower coefficient of friction of the TiO2 nanotube surface that decreases the fretting between contacting components, namely, the sample and friction pad surfaces.
Notes
Acknowledgments
The authors acknowledge the financial support under the Research Grant with No.: UM. TNC2/IPPP/UPGP/261/15 (BK030-2013) from the University of Malaya, Malaysia.
References
- 1.M. Niinomi, Metall. Mater. Trans A, 32A (2001) pp. 477-86.Google Scholar
- 2.M. Niinomi, Mater. Trans., Vol. 49, No. 10 (2008) pp. 2170-78.CrossRefGoogle Scholar
- 3.M. Niinomi: Biomaterials, 24 (2003) 2673–83.CrossRefGoogle Scholar
- 4.A.P. Tomsia, E. Saiz, J. Song, C.R. Bertozzi, Adv. Eng. Mater. 7(11) (2005) 999–1004.CrossRefGoogle Scholar
- 5.G.B. de Souza, G.G. de Lima, N.K. Kuromoto, P. Soares, C.M. Lepienski, C.E. Foerster, A. Mikowski, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 796–806.CrossRefGoogle Scholar
- 6.G.B. de Souza, C.M. Lepienski, C.E. Foerster, N.K. Kuromoto, P. Soares, H.A. Ponte, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 756–65.CrossRefGoogle Scholar
- 7.S.J. Ding, C.P. Ju, J.H.C. Lin, J. Biomed. Mater. Res. A 47/4 (1999) 551–63.CrossRefGoogle Scholar
- 8.D.M. Ebenstein, L.A. Pruitt, Nano Today 1/3 (2006) 26–33.CrossRefGoogle Scholar
- 9.X. Fan, Y. Zhang, P. Xiao, F. Hu, H. Zhang, J. Chem. Phys. 20 (2007) 753–58.Google Scholar
- 10.M. Farooq, Z.H. Lee, J. Korean Phys. Soc. 40/3 (2002) 511–15.Google Scholar
- 11.S. Gangopadhyay, R. Acharya, A.K. Chattopadhyay, S. Paul, Vacuum 84/6 (2010) 843–50.CrossRefGoogle Scholar
- 12.A. Kar, K. Raja, M. Misra, Surf. Coat. Technol. 201/6 (2006) 3723–31.CrossRefGoogle Scholar
- 13.P. Kelly, R. Arnell, Vacuum 56/3 (2000) 159–72.CrossRefGoogle Scholar
- 14.A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono, P. Schmuki, Acta Biomater. 5/6 (2009) 2322–30.CrossRefGoogle Scholar
- 15.K.S. Lee, I.S. Park, Scripta Mater. 48/6 (2003) 659–63.CrossRefGoogle Scholar
- 16.S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, Ahmed A.D. Sarhan, Y. Alias (2013) J. Mech. Behav. Biomed. 20, 272–82.CrossRefGoogle Scholar
- 17.T. Sultana, G.L. Georgiev, R.J. Baird, G.W. Auner, G. Newaz, R. Patwa, H.J. Herfurth, J. Mech. Behav. Biomed. 2 (2009) 237–42.CrossRefGoogle Scholar
- 18.S. Li, J. Yin, G. Zhang, Sci. China 53/5 (2010) 1068–73.Google Scholar
- 19.S.Q. Liu, Bioregenerative Engineering: Principles and Applications, Wiley, Hoboken, NJ, (2007).CrossRefGoogle Scholar
- 20.J. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, J. Electroanal. Chem. 621/2 (2008) 254–66.CrossRefGoogle Scholar
- 21.M. Mayo, R. Siegel, A. Narayanasamy, W. Nix, J. Mater. Res. 5/05 (1990) 1073–82.CrossRefGoogle Scholar
- 22.V. Nelea, C. Morosanu, M. Iliescu, I. Mihailescu, Surf. Coat. Technol. 173/2 (2003) 315–22.CrossRefGoogle Scholar
- 23.J.M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki: Electrochem. Commun., 2005, vol. 7 (11), pp. 1133–37.Google Scholar
- 24.M. Metikoš-Hukovič, A. Kwokal, and J. Piljac: Biomaterials, 2003, vol. 24, pp. 3765–75.Google Scholar
- 25.ISO Standard: Metallic Materials—Rotating Bar Bending Fatigue Testing, ISO International, 2010.Google Scholar
- 26.J.A. Ghani, I.A. Choudhury, H.H. Hassan, J. Mater. Process. Technol. 145/1 (2004) 84–92.CrossRefGoogle Scholar
- 27.J.A. Toque, M.K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, I. Sopyan, J. Mech. Behav. Biomed. Mater. 3/4 (2010) 324–30.CrossRefGoogle Scholar
- 28.K. Singh, N. Krishnamurthy, A.K. Suri, Tribol. Int. 50/0 (2012) 16–25.CrossRefGoogle Scholar
- 29.G. Crawford, N. Chawla, J. Houston, J. Mech. Behav. Biomed. Mater. 2/6 (2009) 580–87.CrossRefGoogle Scholar
- 30.Z. Hashin, B.W. Rosen, J. Appl. Mech., 31 (1964), pp. 223–32.CrossRefGoogle Scholar
- 31.Y. Al-Khatatbeh, K.K. M. Lee, B. Kiefer, J. Phys. Chem. C. 116 (2012) 21635–39.CrossRefGoogle Scholar
- 32.W.Y. Chang, T.H. Fang, Z.W. Chiu, Y.J. Hsiao, L.W. Ji, Microporous Mesoporous Mater. 145/1 (2011) 87–92.CrossRefGoogle Scholar
- 33.A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri, K. Koumoto (2008) J. Mater. Sci. 43(17), 5924–29.CrossRefGoogle Scholar
- 34.M.R. VanLandingham, J. Res. Natl Inst. Stand. Technol. 108/4 (2003) 249–65.CrossRefGoogle Scholar
- 35.T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, ACS Nano 3/10 (2009) 3098–3102.CrossRefGoogle Scholar
- 36.B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, S.V. Joshi, G. Sundararajan (2008) Surf. Coat. Technol. 202(8) 1462–69.CrossRefGoogle Scholar
- 37.Y. Sun, K. Yan, G. Wang, W. Guo, T. Ma, J. Phys. Chem. C. 115 (2011), 12844–49.CrossRefGoogle Scholar
- 38.G. Majzoobi, M. Jaleh, Mater. Sci. Eng. A 452 (2007) 673–81.CrossRefGoogle Scholar
- 39.X. Zhang, D. Liu, Trans. Nonferrous Mater. Soc. China 19/3 (2009) 557.CrossRefGoogle Scholar
- 40.L. Pazos, P. Corengia, H. Svoboda, J. Mech. Behav. Biomed. Mater. 3/6 (2010) 416–24.CrossRefGoogle Scholar
- 41.E. Zalnezhad, A.A.D. Sarhan, M. Hamdi (2012) Int. J. Precision Eng. Manuf. 13, 1453–59.CrossRefGoogle Scholar
- 42.A. Vadiraj, M. Kamaraj, Tribol. Int. 40/1 (2007) 82–88.CrossRefGoogle Scholar