Metallurgical and Materials Transactions A

, Volume 45, Issue 2, pp 1049–1056 | Cite as

Coefficient of Friction Measured from Nano- to Macro-Normal Loads on Plasma Sprayed Nanostructured Cermet Coatings

  • A. K. BasakEmail author
  • J.-P. Celis
  • M. Vardavoulias
  • P. Matteazzi


Alumina dispersed FeCuAl-based nanostructured cermet coatings were deposited from nanostructured powders by atmospheric plasma spraying on low carbon steel substrates. Nanostructuring was retained in the deposited coatings which exhibit up to four distinctive phases as revealed by electron microscopy. In this study, the friction behavior of the distinctive phases at nano-normal load scale was investigated alongside their contribution to the overall friction behavior at macro-normal load scale. Friction behavior at nano-normal load scale was investigated by lateral force microscopy, whereas conventional tribometers were used for investigations at micro and macro-normal loads. It appeared that, the friction measured at nano-normal loads on individual phases is dictated by both composition and hardness of the corresponding phases, and thus influences the overall friction behavior of the coatings at macro-normal loads. Moreover, the coefficient of friction at macro-normal loads differs from the one at nano-normal loads, and deviates from Amonton’s friction law.


Normal Force Normal Load Adhesion Force Atmospheric Plasma Spray Friction Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was done in the framework of a European GROWTH 2003 to 2006 project Nanospraying (contract G5RD-CT-2002-00862). A. K. Basak also acknowledges KU Leuven for providing a fellowship to carry out part of this work. Support by the WOG Scientific network of the Flemish FWO is also acknowledged.


  1. 1.
    J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang and H. Herman: Nanostruct. Mater., 1997, vol. 8(1), pp. 61-74.CrossRefGoogle Scholar
  2. 2.
    V.L. Tellkamp, M.L. Lau, A. Fabel and E.J. Lavernia: Nanostruct. Mater., 1997, vol. 9, pp. 489-92.CrossRefGoogle Scholar
  3. 3.
    C.C. Berndt and E.J. Lavernia: J. Therm. Spray Technol., 1998, vol. 7(3), pp. 411–41.CrossRefGoogle Scholar
  4. 4.
    A.K. Basak, S. Achanta, J.P. Celis, M. Vardavoulias and P. Matteazzi: Surf. Coat. Technol., 2008, vol. 202 (11), pp. 2368-73.CrossRefGoogle Scholar
  5. 5.
    A.K. Basak, W. Zein Eddine, J.P. Celis and P. Matteazzi: J. Nanosci. Nanotechnol., 2010, vol. 10 (2), pp. 1179-84.CrossRefGoogle Scholar
  6. 6.
    B. Bhushan, J. Israelachvili and U. Landman: Nature, 1995, vol. 374, pp. 607-16.CrossRefGoogle Scholar
  7. 7.
    S. Achanta, D. Drees, J.P. Celis, O. Mollenhauer and F. Spiller (2004) Tribotest, 11(2), 137–49.CrossRefGoogle Scholar
  8. 8.
    H. Mohrbacher, J.P. Celis and J.R. Roos: Tribol. Int., 1995, vol. 28 (5), pp. 269–78.CrossRefGoogle Scholar
  9. 9.
    P. Matteazzi and M. Alcala, Mater. Sci. Eng. A: 1997, vol. 230, pp. 161–66.CrossRefGoogle Scholar
  10. 10.
    A. K. Basak: PhD Thesis, Katholieke Universeteit Leuven, Belgium, 2009.Google Scholar
  11. 11.
    Digital Instruments Nanoscope III, AFM/LFM Instruction Manual, Section 10.1–10.6.Google Scholar
  12. 12.
    J.A. Ruan and B. Bhushan: Trans. ASME, 1994, vol. 116, pp. 378-88.Google Scholar
  13. 13.
    S. Fujisawa, E. Kishi, Y. Sugawara and S. Morita (1995) Appl. Phys. Lett., 66(4), pp. 526–29.CrossRefGoogle Scholar
  14. 14.
    H. Butt, B. Cappella and M. Kappl: Surf. Sci. Rep., 2005, vol. 59, pp. 1–152.CrossRefGoogle Scholar
  15. 15.
    H. Hertz: J. Reine Angew. Math. 1881, vol. 92, pp. 156–71.Google Scholar
  16. 16.
    Z. Huq and J.-P. Celis: Wear, 2002, vol. 252, pp. 375–83.CrossRefGoogle Scholar
  17. 17.
    S. Sundararajan and B. Bhushan: J. Appl. Phys. 2000, vol. 88, pp. 4825-31.CrossRefGoogle Scholar
  18. 18.
    R.M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.-J. Guntherodt, M. Fujihira, H. Takano and Y. Gotoh: Nature, 1992, vol. 359, pp. 133–35.CrossRefGoogle Scholar
  19. 19.
    E. Gnecco, R. Bennewitz, A. Socoliuc and E. Meyer: Wear, 2003, vol. 254, pp. 859–62.CrossRefGoogle Scholar
  20. 20.
    J.A.Greenwood: Contact of Rough Surfaces, Fundamentals of Friction: Macroscopic and Microscopic Processes, I.L. Singer and H.M. Pollock, eds., Kluwer, Dordrecht, 1992, pp. 37–56.Google Scholar
  21. 21.
    A. Berman, C. Drummond and J. Israelachvili: Tribo. Lett., 1998, vol. 4, pp. 95-101.CrossRefGoogle Scholar
  22. 22.
    L. Wenning and M.H. Muser: Europhys. Lett., 2001, vol. 54 (5), pp. 693-99.CrossRefGoogle Scholar
  23. 23.
    S. Sundararajan and B.Bhushan: J. Vac. Sci. Technol. A, 2001, vol. 19, pp. 1777-85.CrossRefGoogle Scholar
  24. 24.
    B.V.Z. Derjaguin: Physica, 1934, vol. 88, pp. 661-75.Google Scholar
  25. 25.
    Y.I. Rabonivich, J.J. Adler, M.S. Esayanur, A. Ata, R.K.Singh and B.M. Moudgil: Adv. Colloid Interface. Sci. Sci., 2002, vol. 96, pp. 213-30.CrossRefGoogle Scholar
  26. 26.
    X. Zhang and J.P. Celis: Appl. Surf. Sci. 2003, vol. 206, pp. 110-18.CrossRefGoogle Scholar
  27. 27.
    S. Achanta and J.-P. Celis: Wear, 2010, vol. 269, pp. 435–42.CrossRefGoogle Scholar
  28. 28.
    D.H. Buckley, Surface Effects in Adhesion, Friction, Wear and Lubrication, Elsevier, New York, 1981.Google Scholar
  29. 29.
    I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Edward Arnold, London, 1992.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • A. K. Basak
    • 1
    • 2
    Email author
  • J.-P. Celis
    • 1
  • M. Vardavoulias
    • 3
  • P. Matteazzi
    • 4
  1. 1.Department MTMKU LeuvenLeuvenBelgium
  2. 2.Adelaide MicroscopyThe University of AdelaideAdelaideAustralia
  3. 3.PyroGenesis SATechnological Park of LavrionLavrionGreece
  4. 4.CSGI and MBN NanomaterialiaVascon di CarboneraItaly

Personalised recommendations