Metallurgical and Materials Transactions A

, Volume 45, Issue 1, pp 196–200 | Cite as

Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy

Symposium: High Entropy Alloys

Abstract

The high entropy alloy containing refractory metals Mo-Nb-Ta-W has a body-centered cubic structure, which is not surprising given the complete mutual solubility in BCC solid solutions of all pairs of the constituent elements. However, first principles total energy calculations for the binaries reveal a set of distinct energy minimizing structures implying the likelihood of chemically ordered low-temperature phases. We apply a hybrid Monte Carlo and molecular dynamics method to evaluate the temperature-dependent chemical order. Monte Carlo species swaps allow for equilibration of the structure that cannot be achieved by conventional molecular dynamics. At 300 K (27 °C), a cesium-chloride ordering emerges between mixed (Nb,Ta) sites and mixed (Mo,W) sites. This order is lost at elevated temperatures.

References

  1. 1.
    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Adv. Eng. Mater. 6:299–303.CrossRefGoogle Scholar
  2. 2.
    Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) . Intermetallics. 18:1758–65.CrossRefGoogle Scholar
  3. 3.
    S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, art. no. 103505.Google Scholar
  4. 4.
    Yang X, Zhang Y (2012) Mater. Chem. Phys. 132:233–38.CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Yang X, Liaw PK (2012) JOM 64:830–38.CrossRefGoogle Scholar
  6. 6.
    Otto F, Yang Y, Bei H, George EP (2013) Acta Mater. 61:2628–38.CrossRefGoogle Scholar
  7. 7.
    F.Y. Tian, L.K. Varga, N. Chen, L. Delczeg, and L. Vitos: Phys. Rev. B, 2013, vol. 87, art. no. 075144.Google Scholar
  8. 8.
    Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Acta Mater. 59:182–90.CrossRefGoogle Scholar
  9. 9.
    Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Tu CP (2006) Mater. Trans. 47:1395–401.CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw: Sci. Rep., 2013, vol. 3, art. no. 1455.Google Scholar
  11. 11.
    Villars P (1983) J. Less Common Met. 92:215–38.CrossRefGoogle Scholar
  12. 12.
    Pettifor DG (1988) Mater. Sci. Technol. 4:675–91.CrossRefGoogle Scholar
  13. 13.
    V. Blum and A. Zunger: Phys. Rev. B 72:02010R, 2005.Google Scholar
  14. 14.
    Curtarolo S, Morgan D, Ceder G (2005) . CALPHAD: Comput. Coupling. Phase. Diagrams. Thermochem. 29:163–211.CrossRefGoogle Scholar
  15. 15.
    P.E.A. Turchi, A. Gonis, V. Drchal, and J. Kudrnovský: Phys. Rev. B, 2001, vol. 64, art. no. 085112.Google Scholar
  16. 16.
    P.E.A. Turchi, V. Drchal, J. Kudrnovsky, C. Colinet, L. Kaufman, and Z.-K. Liu: Phys. Rev. B, 2005, vol. 71, art. no. 094206.Google Scholar
  17. 17.
    Hart GLW, Blum V, Walorski MJ, Zunger A (2005) Nat. Mater. 4:391–94.CrossRefGoogle Scholar
  18. 18.
    Kresse G, Furthmuller J (1996) Phys. Rev. B 54:11169–86.CrossRefGoogle Scholar
  19. 19.
    Kresse G, Joubert D (1999) Phys. Rev. B 59:1758–75.CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys. Rev. Lett. 77:3865–68.CrossRefGoogle Scholar
  21. 21.
    Neyts EC, Bogaerts A (2013) Theor. Chem. Acc. 132:1–12.Google Scholar
  22. 22.
    de Grosso MF, Bozzolo G, Mosca HO (2012) Physica B 407:3285–87.CrossRefGoogle Scholar
  23. 23.
    Bozzolo G, Ferrante J, Smith JR (1992) Phys. Rev. B 45:493–96.CrossRefGoogle Scholar
  24. 24.
    Masuda-Jindo K, Hung VV, Turchi PEA (2006) Metall. Mater. Trans. A 37:3403–09.CrossRefGoogle Scholar
  25. 25.
    Predmore R, Arsenault RJ (1970) Scripta Met. 4:213–18.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Michael Widom
    • 1
  • W. P. Huhn
    • 1
  • S. Maiti
    • 2
  • W. Steurer
    • 2
  1. 1.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA
  2. 2.Laboratory of CrystallographyETH ZurichZurichSwitzerland

Personalised recommendations