Metallurgical and Materials Transactions A

, Volume 45, Issue 1, pp 501–509 | Cite as

High-Temperature Fatigue of a Hybrid Aluminum Metal Matrix Composite

Article

Abstract

An aluminum metal matrix composite (MMC) brake drum was tested in fatigue at room temperature and extreme service temperatures. At room temperature, the hybrid composite did not fail and exceeded estimated vehicle service times. At higher temperatures (62 and 73 pct of the matrix eutectic), fatigue of a hybrid particle/fiber MMC exhibited failure consistent with matrix overloading. Overaging of the A356 matrix coupled with progressive fracture of the SiC particles combined to create the matrix overload condition. No evidence of macro-fatigue crack initiation or growth was observed, and the matrix–particle interface appeared strong with no debonding, visible matrix phases, or porosity. An effective medium model was constructed to test the hypothesis that matrix overloading was the probable failure mode. The measured particle fracture rate was fit using realistic values of the SiC Weibull strength and modulus, which in turn predicted cycles to failure within the range observed in fatigue testing.

Notes

Acknowledgments

This work was funded in part by Army SBIR contract W56HZV-09-C-0026 through GS Engineering, Inc. (Houghton, MI). At GS Engineering, Jim Vendlinski assisted with FEA modeling and Paul Fraley and Tom Wood provided technical assistance. Matt Kero and Charlie Janis at Century Inc. (Traverse City, MI) supplied composite materials and insight on brake dynamometer testing. Pat Quimby, Steve Forsell, and Owen Mills at Michigan Tech provided experimental assistance.

References

  1. 1.
    M. D. Rafiquzzaman (2008) J Solid Mech Mater Eng 2:47–57.CrossRefGoogle Scholar
  2. 2.
    D.J. Lloyd (1994) Int Mater Rev 39:1–23.CrossRefGoogle Scholar
  3. 3.
    J. N. Hall, J. W. Jones and A. K. Sachdev (1994) Mater Sci Eng A 183:69–80.CrossRefGoogle Scholar
  4. 4.
    Y. Ochi, K. Masaki, T. Matsumura and M. Wadasako (2007) Mater Sci Eng A 468:230–36.CrossRefGoogle Scholar
  5. 5.
    A. E. Herr, S. Canumalla and R. N. Pangborn (1995) Mater Sci Eng A 200: 181–91.CrossRefGoogle Scholar
  6. 6.
    T. S. Srivatsan and M. Al-Hajri (2002) Composites B 33:391–404.CrossRefGoogle Scholar
  7. 7.
    H. Z. Ding, H. Biermann and O. Hartmann (2002) Compos Sci Technol 62:2189–99.CrossRefGoogle Scholar
  8. 8.
    J. D. Eshelby (1957) Proc R Soc Lond 241:376–96.CrossRefGoogle Scholar
  9. 9.
    J. D. Eshelby (1959) Proc R Soc Lond 252:561–69.CrossRefGoogle Scholar
  10. 10.
    L. M. Brown and D. R. Clarke (1975) Acta Metall 23:821–30.CrossRefGoogle Scholar
  11. 11.
    S. F. Corbin and D. S. Wilkinson (1994) Acta Metall Mater 42:1311–18.CrossRefGoogle Scholar
  12. 12.
    C. W. Nan and D. R. Clarke (1996) Acta Mater 44:3801–11.CrossRefGoogle Scholar
  13. 13.
    M. Kero, T. Hewer, and J. Zills: SAE Technical Paper 2012-01-1922, 2012.Google Scholar
  14. 14.
    J. G. Kaufman, Properties of Aluminum Alloys: Tensile, Creep and Fatigue Data at High and Low Temperatures, ASM International, Materials Park, OH, 1999, p. 257. Google Scholar
  15. 15.
    A. Mkaddem and M. El Mansori (2009) Mater Des 30:3518–24.CrossRefGoogle Scholar
  16. 16.
    L. L. Snead, T. Nozawa, Y. Katoh, T. S. Byun, S. Kondo and D. A. Petti (2007) J Nucl Mater 371:329–77.CrossRefGoogle Scholar
  17. 17.
    M.E. Fitzpatrick: Residual Stress. Vii, 2006, vols. 524–525, pp. 769–74.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Benteler Aluminium Systems Michigan Inc.HollandUSA

Personalised recommendations