Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 11, pp 4927–4936 | Cite as

Characterization of Creep-Damaged Grain Boundaries of Alloy 617

  • Fan Zhang
  • David P. FieldEmail author
Symposium: Quantification of Texture and Microstructure Gradients in Polycrystalline Materials

Abstract

Intergranular cracking and void nucleation occur over extended periods of time in alloy 617 when subjected to stress at high temperatures. Damage occurs inhomogeneously with some boundaries suffering failure, while others are seemingly immune to creep. Crack propagation associated with grain size, and grain boundary character was investigated to determine which types of grain boundaries are susceptible to damage and which are more resistant. Electron backscatter diffraction and a stereological approach to obtain the five-parameter grain boundary distribution were used to measure the proportions of each type of boundary in the initial and damaged structures. The samples were crept at 1273.15 K (1000 °C) at 25 MPa until fracture. It was found that in addition to low-angle and coherent twin boundaries, other low index boundary plane grain boundaries with twist character are relatively resistant to creep.

Keywords

Twin Boundary Triple Junction Intergranular Crack Coincident Site Lattice Fracture Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the receipt of the alloy 617 metal from Dr. Richard Wright of Idaho National Laboratory. Mr. John Bryson is also thanked for his work in designing and building the test jigs required to test at temperatures in excess of 1273.15 K (1000 °C).

References

  1. 1.
    A.R. Ibañez, A. Saxena, and J. Kang: Strength Fract. Complex, 2006, vol. 4, pp. 75–81.Google Scholar
  2. 2.
    S. A. Sajjadi and S. Nategh: Mater. Sci. Eng. A, 2001, vol. 307, pp. 158–64.CrossRefGoogle Scholar
  3. 3.
    R. Monzen, R. Monzen, H. Shigehara, and K. Kita: Mater. Sci., 2000, vol. 35, pp. 5839–43.CrossRefGoogle Scholar
  4. 4.
    S. Kihara, A. Ohtomo, and Y. Saiga: Metall. Trans. A, 1980, vol. 11A, pp. 1019–1031.Google Scholar
  5. 5.
    Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasudevan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2569–85.CrossRefGoogle Scholar
  6. 6.
    T. Lillo, J. Cole, M. Frary, and S. Schlegel: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2803–811.CrossRefGoogle Scholar
  7. 7.
    S.K. Sharma, J.W. Choi, and K.J. Kang: Adv. Mater. Res., 2007, vol. 26, p. 233.CrossRefGoogle Scholar
  8. 8.
    S. Yang, U. Krupp, H. Christ, and V. B. Trindade: Adv. Eng. Mater., 2005, vol. 7, pp. 723–26.CrossRefGoogle Scholar
  9. 9.
    S. Schlegel, S. Hopkins, E. Young, J. Cole, T. Lillo, and M. Frary: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2812–23.CrossRefGoogle Scholar
  10. 10.
    W.G. Kim, S.N. Yin, Y.W. Kim, and J.H. Chang: Proceedings of ASME, 2008, 61356.Google Scholar
  11. 11.
    T. Skidmore, R.G. Buchheit, and M.C. Juhas: Acta Mater., 2004, vol. 50, no. 6, pp. 873–77.Google Scholar
  12. 12.
    A. Thomas, M.E. Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Technol., 2006, vol. 177, pp. 469–72.CrossRefGoogle Scholar
  13. 13.
    L.P. Evers, W.A.M. Brekelmansb, and M.G.D. Geers: Int. J. Solids Struct., 2004, vol. 41, pp. 5209–30.CrossRefGoogle Scholar
  14. 14.
    V.Y. Gertsman and S.M. Bruemmer: Acta Mater., 2001, vol. 49, pp. 1589–98.CrossRefGoogle Scholar
  15. 15.
    M. Kumar, W.E. King, and A.J. Schwartz: Acta Mater., 2000, vol. 48, pp. 2081–91.CrossRefGoogle Scholar
  16. 16.
    B.W. Reed, M. Kumar, R.W. Minich, and R.E. Rudd: Acta Mater., 2008, vol. 56, no. 13, pp. 3278–89.CrossRefGoogle Scholar
  17. 17.
    A.P. Sutton and R.W. Balluffi: Acta Metall., 1987, vol. 35, pp. 2177–2201.CrossRefGoogle Scholar
  18. 18.
    D. P. Field and B. L. Adams: Metall. Trans., 1992, vol. 23A, pp. 2515–26.Google Scholar
  19. 19.
    B.L. Adams and D.P. Field: Metall. Trans. A, 1992, vol. 23, pp. 2501–13.CrossRefGoogle Scholar
  20. 20.
    A. Morawiec: Orientations and Rotations. Computations in Crystallographic Textures, Springer, Berlin, 2004.CrossRefGoogle Scholar
  21. 21.
    D. Wolf: Atomic-level Structure and Properties 1922, D. Wolf and S. Yip, eds., Chapman & Hall, London, 1922, p. 1.Google Scholar
  22. 22.
    D.M. Saylor, B.S. El-Dasher, B.L. Adams, and G.S. Rohrer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1981–89.CrossRefGoogle Scholar
  23. 23.
    M.A. Fortes: Acta Crystallogr. A, 1972, vol. 28, p. 100.Google Scholar
  24. 24.
    D.P. Field: Ultramicroscopy, 1997, vol. 67, pp. 1–9.CrossRefGoogle Scholar
  25. 25.
    D.J. Dingley, D.P. Field: Mater. Sci. Technol., 1997, vol. 13, pp. 69–78.CrossRefGoogle Scholar
  26. 26.
    D.G. Brandon: Acta Metall., 1966, vol. 12, pp. 1479–84.Google Scholar
  27. 27.
    H.J. Breuer and H. Breitling: W. Dietz, 8th Meeting on Long Term Behavior of Creep Resistant Steels and High Temperature Materials, Association for Creep-Resistant Steels and Association for High-Temperature Materials, Düsseldorf, 1985.Google Scholar
  28. 28.
    G. Palumbo, P. J. King, P. C. Lichtenberger, K. T. Aust, and U. Erb: Mater. Res. Soc. Symp. Proc., 1991, vol. 238, pp. 311–16.CrossRefGoogle Scholar
  29. 29.
    K.T. Aust: Can. Inst. Min. Metall., 1994, vol. 33, pp. 265–74.CrossRefGoogle Scholar
  30. 30.
    N.E. Dowling: Mechanical Behavior of Materials, 3rd edn, Prentice Hall, Upper Saddle River, 2006.Google Scholar
  31. 31.
    A. Morawiec: J. Appl. Crystallogr., 2011, vol. 44, pp. 1152–1156.CrossRefGoogle Scholar
  32. 32.
    T. Watanabe: Mater. Sci. Eng. A, 1993, vol. 166, pp. 11–28.CrossRefGoogle Scholar
  33. 33.
    H.C. Chang and N.G. Grant: Trans. Am. Inst. Min. Metall. Eng., 1956, vol. 206, pp. 544–51.Google Scholar
  34. 34.
    F. Zhang and D.P. Field: Mater. Res. Soc. Symp. Proc., 2012, 1383.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Materials Science ProgramWashington State UniversityPullmanUSA
  2. 2.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations