Advertisement

Metallurgical and Materials Transactions A

, Volume 45, Issue 1, pp 464–476 | Cite as

Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder

  • Dongdong GuEmail author
  • Hongqiao Wang
  • Guoquan Zhang
Article

Abstract

The additive manufacturing of bulk-form TiC/Ti nanocomposite parts was performed using Selective Laser Melting (SLM). Two categories of nanopowder, i.e., ball-milled TiC/Ti nanocomposite powder and directly mechanical mixed nano-TiC/Ti powder, were used for SLM. The influences of nanopowder characteristics and laser processing parameters on the densification behavior, microstructural features, and tribological properties of the SLM-processed TiC/Ti nanocomposite parts were studied. The study showed that the densification of TiC/Ti nanocomposite parts was affected by both laser energy density and powder categories. Using an insufficient laser energy density of 0.25 kJ/m lowered SLM densification rate, because of the occurrence of balling effect. An increase in the laser energy density above 0.33 kJ/m produced near fully dense SLM parts. The SLM densification levels of the ball-milled TiC/Ti nanocomposite powder were generally higher than that of the directly mixed nano-TiC/Ti powder. The TiC-reinforcing phase in SLM-processed TiC/Ti parts typically had a lamellar nanostructure with a nanoscale thickness, completely differing from the starting nanoparticle morphology before SLM. The lamellar nanostructure of the TiC reinforcement in SLM-processed ball-milled TiC/Ti nanocomposite parts could be maintained within a wide range of laser energy densities. However, the microstructures of the SLM-processed, directly mixed nano-TiC/Ti powder were sensitive to SLM parameters, and the TiC reinforcement experienced a successive change from the lamellar nanostructure to the relatively coarsened dendritic microstructure as laser energy density increased. A combination of the sufficiently high SLM densification rate and the formation of the nanostructured TiC reinforcement favored the improvement of the tribological property, leading to the considerably low coefficient of friction of 0.22 and wear rate of 2.8 × 10−16 m3 N−1 m−1. The coarsening and resultant disappearance of nanoscale TiC reinforcement in SLM-consolidated directly mixed nano-TiC/Ti powder at a high laser energy density lowered the tribological performance considerably.

Keywords

Additive Manufacturing Selective Laser Melting Laser Energy Density Nanocomposite Powder Selective Laser Melting Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (No. 51104090), the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), and the NUAA Fundamental Research Funds (No. NE2013103).

References

  1. 1.
    T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.CrossRefGoogle Scholar
  2. 2.
    J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: CIRP Ann. Manuf. Technol., 2007, vol. 56, pp. 730–59.CrossRefGoogle Scholar
  3. 3.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133–64.CrossRefGoogle Scholar
  4. 4.
    P. Yu, M. Yan, G.B. Schaffer, and M. Qian: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2417–24.CrossRefGoogle Scholar
  5. 5.
    B. Zheng, J.E. Smugeresky, Y. Zhou, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1196–205.CrossRefGoogle Scholar
  6. 6.
    B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237–45.CrossRefGoogle Scholar
  7. 7.
    V.D. Manvatkar, A.A. Gokhale, G. Jagan Reddy, A. Venkataramana, and A. De: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 4080–87.CrossRefGoogle Scholar
  8. 8.
    W.P. Liu and J.N. DuPont: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1133–40.Google Scholar
  9. 9.
    R. Banerjee, A. Genç, P.C. Collins, and H.L. Fraser: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2143–52.CrossRefGoogle Scholar
  10. 10.
    B.V. Krishna, S. Bose, and A. Bandyopadhyay: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1096–103.CrossRefGoogle Scholar
  11. 11.
    I. Yadroitsev, L. Thivillon, Ph. Bertrand, and I. Smurov: Appl. Surf. Sci., vol. 254, pp. 980–83.Google Scholar
  12. 12.
    K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: J. Mater. Process Technol., 2008, vol. 195, pp. 77–87.CrossRefGoogle Scholar
  13. 13.
    P. Fox, S. Pogson, C.J. Sutcliffe, and E. Jones: Surf. Coat Technol., 2008, vol. 202, pp. 5001–07.CrossRefGoogle Scholar
  14. 14.
    C.Z. Yan, L. Hao, A. Hussein, and D. Raymont: Int. J. Mach. Tools Manuf., 2012, vol. 62, pp. 32–38.CrossRefGoogle Scholar
  15. 15.
    D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849–60.CrossRefGoogle Scholar
  16. 16.
    M. Zhong and W. Liu: Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 2010, vol. 224, pp. 1041–60.CrossRefGoogle Scholar
  17. 17.
    M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay: Scripta Mater., 2010, vol. 63, pp. 438–41.CrossRefGoogle Scholar
  18. 18.
    B. Duan and M. Wang: MRS Bull., 2011, vol. 36, pp. 998–1005.CrossRefGoogle Scholar
  19. 19.
    S.R. Athreya, K. Kalaitzidou, and S. Das: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2637–42.CrossRefGoogle Scholar
  20. 20.
    S. Dadbakhsh and L. Hao: Adv. Eng. Mater., 2012, vol. 14, pp. 45–48.CrossRefGoogle Scholar
  21. 21.
    S.S. Singh, D. Roy, R. Mitra, R.V. Subba Rao, R.K. Dayal, B. Raj, I. Manna: Mater. Sci. Eng. A, 2009, vol. 501, pp. 242–47.CrossRefGoogle Scholar
  22. 22.
    V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal: Mater. Sci. Eng. R, 2006, vol. 54, pp.121–285.CrossRefGoogle Scholar
  23. 23.
    A. Mortensen and J. Llorca: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 243–70.CrossRefGoogle Scholar
  24. 24.
    S.K. Kumar and R. Krishnamoorti: Annu. Rev. Chem. Biomol. Eng., 2010, vol. 1, pp. 37–58.CrossRefGoogle Scholar
  25. 25.
    S.C. Tjong: Adv. Eng. Mater., 2007, vol. 9, pp. 639–52.CrossRefGoogle Scholar
  26. 26.
    M. Sherif El-Eskandarany, M. Omori, T. Hirai, T.J. Konno, K. Sumiyama, and K. Suzuki: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 157–64.CrossRefGoogle Scholar
  27. 27.
    I.V. Alexandrov, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, and T.C. Lowe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2253–60.CrossRefGoogle Scholar
  28. 28.
    P. Asadi, G. Faraji, A. Masoumi, and M.K. Besharati Givi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2820–32.CrossRefGoogle Scholar
  29. 29.
    V. Udhayabanu, K.R. Ravi, K. Murugan, D. Sivaprahasam, and B.S. Murty: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2085–93.CrossRefGoogle Scholar
  30. 30.
    A.A.M. da Silva, J.F. dos Santos, and T.R. Strohaecker: Compos. Sci. Technol., 2005, vol. 65, pp. 1749–55.CrossRefGoogle Scholar
  31. 31.
    L. Xiao, W. Lu, J. Qin, Y. Chen, D. Zhang, M. Wang, F. Zhu, B. Ji: Compos. Sci. Technol., 2009, vol. 69, pp. 1925–31.CrossRefGoogle Scholar
  32. 32.
    D.D. Gu, G.B. Meng, C. Li, W. Meiners, and R. Poprawe: Scripta Mater., 2012, vol. 67, pp. 185–88.CrossRefGoogle Scholar
  33. 33.
    D.D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Compos. Sci. Technol., 2011, vol. 71, pp. 1612–20.CrossRefGoogle Scholar
  34. 34.
    A. Simchi, F. Petzoldt, and H. Pohl: J. Mater. Process Technol., 2003, vol. 141, pp. 319–28.CrossRefGoogle Scholar
  35. 35.
    D.D. Gu and Y.F. Shen: J. Alloys Compd., 2009, vol. 473, pp. 107–15.CrossRefGoogle Scholar
  36. 36.
    M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow: Rapid Prototyping J., 1995, vol. 1, pp. 26–36.CrossRefGoogle Scholar
  37. 37.
    A. Simchi, F. Petzoldt, and H. Pohl: Int. J. Powder Metall., 2001, vol. 37, pp. 49–61.Google Scholar
  38. 38.
    N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, and M.B. Ignatiev: Rapid Prototyping J., 2004, vol. 10, pp. 78–87.CrossRefGoogle Scholar
  39. 39.
    D.D. Gu and Y.F. Shen: Mater. Design, 2009, vol. 30, pp. 2903–10.CrossRefGoogle Scholar
  40. 40.
    P.M. Ajayan, L.S. Schadler, and P.V. Braun: Nanocomposite Science and Technology, 1st ed., Wiley-VCH, Weinheim, Germany, 2003.CrossRefGoogle Scholar
  41. 41.
    P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon: Acta Mater., 2003, vol. 51, pp. 1651–62.CrossRefGoogle Scholar
  42. 42.
    I. Takamichi and I.L.G. Roderick: The Physical Properties of Liquid Metals, 1st ed., Clarendon Press, Oxford, UK, 1993.Google Scholar
  43. 43.
    Y.T. Chan and S.K. Choi: J. Appl. Phys., 1992, vol. 72, pp. 3741–49.CrossRefGoogle Scholar
  44. 44.
    J. Tille and J.C. Kelly: Brit. J. Appl. Phys., 1963, vol. 14, pp. 717–19.CrossRefGoogle Scholar
  45. 45.
    H.J. Niu and I.T.H. Chang: Scripta Mater., 1999, vol. 41, pp. 1229–34.CrossRefGoogle Scholar
  46. 46.
    S. Das: Adv. Eng. Mater., 2003, vol. 5, pp. 701–711.CrossRefGoogle Scholar
  47. 47.
    V.V. Semak, G.A. Knorovsky, D.O. MacCallum, and R. Allen Roach: J. Phys. D Appl. Phys., 2006, vol. 39, pp. 590–95.CrossRefGoogle Scholar
  48. 48.
    L.R. Xu and S. Sengupta: J. Nanosci. Nanotechnol., 2005, vol. 5, pp. 620–26.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA)NanjingP.R. China

Personalised recommendations