Metallurgical and Materials Transactions A

, Volume 45, Issue 3, pp 1102–1111 | Cite as

High-Temperature Creep and Oxidation Behavior of Mo-Si-B Alloys with High Ti Contents

  • Daniel Schliephake
  • Maria Azim
  • Katharina von Klinski-Wetzel
  • Bronislava Gorr
  • Hans-Jürgen Christ
  • Hongbin Bei
  • Easo P. George
  • Martin Heilmaier
Symposium: Beyond Nickel-Base Superalloys II

Abstract

Multiphase alloys in the Mo-Si-B system are potential high-temperature structural materials due to their good oxidation and creep resistance. Since they suffer from relatively high densities, the current study focuses on the influence of density-reducing Ti additions on creep and oxidation behavior at temperatures above 1273 K (1000 °C). Two alloys with compositions of Mo-12.5Si-8.5B-27.5Ti and Mo-9Si-8B-29Ti (in at. pct) were synthesized by arc melting and then homogenized by annealing in vacuum for 150 hours at 1873 K (1600 °C). Both alloys show similar creep behavior at stresses of 100 to 300 MPa and temperatures of 1473 K and 1573 K (1200 °C and 1300 °C), although they possess different intermetallic volume fractions. They exhibit superior creep resistance and lower density than a state-of-the-art Ni-base superalloy (single-crystalline CMSX-4) as well as other Mo-Si-B alloys. Solid solution strengthening due to Ti was confirmed by Vickers hardness measurements and is believed to be the reason for the significant increase in creep resistance compared to Mo-Si-B alloys without Ti, but with comparable microstructural length scales. The addition of Ti degrades oxidation resistance relative to a Mo-9Si-8B reference alloy due to the formation of a relatively porous duplex layer with titania matrix enabling easy inward diffusion of oxygen.

References

  1. 1.
    D. M. Dimiduk and J. H. Perepezko: MRS Bulletin, 2003, vol. 28, pp. 639–45.CrossRefGoogle Scholar
  2. 2.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.CrossRefGoogle Scholar
  3. 3.
    B. P. Bewlay, M. R. Jackson, J.-C. Zhao, P. R. Subramanian, M. G. Mendiratta, and J. J. Lewandowski: MRS Bulletin, 2003, vol. 28, pp. 646–53.CrossRefGoogle Scholar
  4. 4.
    P. Jéhanno, M. Heilmaier, H. Kestler, M. Böning, A. Venskutonis, B. Bewlay and M. Jackson: Metall. Mater. Trans. A, 2005, 36A: 515–23.CrossRefGoogle Scholar
  5. 5.
    J. H. Schneibel, C. T. Liu, D. S. Easton, and C. A. Carmichael: Mater. Sci. Eng. A, 1999, vol. 261, pp. 78–83.CrossRefGoogle Scholar
  6. 6.
    D.M. Berczik: US Patents 5,595,616 and 5,693156, 1997.Google Scholar
  7. 7.
    H. Choe, D. Chen, J. H. Schneibel, and R. O. Ritchie: Intermetallics, 2001, vol. 9, pp. 319–29.CrossRefGoogle Scholar
  8. 8.
    T. A. Parthasarathy, M. G. Mendiratta, and D. M. Dimiduk: Acta Mater., 2002, vol. 50, pp. 1857–68.CrossRefGoogle Scholar
  9. 9.
    P. Jéhanno, M. Heilmaier, and H. Kestler: Intermetallics, 2004, vol. 12, pp. 1005–09.CrossRefGoogle Scholar
  10. 10.
    G. Erickson: JOM, 1995, vol. 47, pp. 36–39.CrossRefGoogle Scholar
  11. 11.
    Y. Yang, Y. A. Chang, L. Tan, and W. Cao: Acta Materialia, 2005, vol. 53, pp. 1711–20.CrossRefGoogle Scholar
  12. 12.
    R. Sakidja and J. H. Perepezko: J. Nucl. Mater., 2007, vol. 366, pp. 407–16.CrossRefGoogle Scholar
  13. 13.
    Y. Yang, H. Bei, S. Chen, E. P. George, J. Tiley, and Y. A. Chang (2010) Acta Mater. 58:541–48.CrossRefGoogle Scholar
  14. 14.
    Y. Yang, Y. A. Chang, L. Tan, and Y. Du: Mater. Sci. Eng. A, 2003, vol. 361, pp. 281–93.CrossRefGoogle Scholar
  15. 15.
    Y. Yang and Y. A. Chang: Intermetallics, 2005, vol. 13, pp. 121–28.CrossRefGoogle Scholar
  16. 16.
    I. Rosales, H. Martinez, D. Bahena, J. A. Ruiz, R. Guardian, and J. Colin: Corros. Sci., 2009, vol. 51, pp. 534–38.CrossRefGoogle Scholar
  17. 17.
    M. K. Meyer, M. J. Kramer, and M. Aknic: Advanced Materials, 1996, vol. 8, pp. 85–88.CrossRefGoogle Scholar
  18. 18.
    M. K. Meyer, M. J. Kramer, and M. Akinca: Intermetallics, 1996, vol. 4, pp. 273–81.CrossRefGoogle Scholar
  19. 19.
    J. H. Schneibel, P. F. Tortorelli, R. O. Ritchie, and J. J. Kruzic: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 525–31.CrossRefGoogle Scholar
  20. 20.
    R. Mitra: Int. Mat. Rev., 2006, vol. 51, pp. 13–64.CrossRefGoogle Scholar
  21. 21.
    S.-H. Haa, K. Yoshimia, K. Maruyamaa, R. Tub, and T. Goto. (2012) Mater. Sci. Eng. A 552:179–88.CrossRefGoogle Scholar
  22. 22.
    M. Azim, S. Burk, B. Gorr, H.-J. Christ, D. Schliephake, M. Heilmaier, R. Bornemann, and P. Haring Bolivar: Oxid. Met. DOI: 10.1007/s11085-013-9375-1.
  23. 23.
    S. Burk, B. Gorr, V. B. Trindade, and H.-J. Christ: Oxid. Met., 2009, vol. 73, pp. 163–81.CrossRefGoogle Scholar
  24. 24.
    R. Sakidja, J. H. Perepezko, S. Kim, and N. Sekido: Acta Mater., 2008, vol. 56, no. 18, pp. 5223–44.CrossRefGoogle Scholar
  25. 25.
    Y. Liu, M. J. Kramer, A. J. Thom, and M. Akinc: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 601–07.CrossRefGoogle Scholar
  26. 26.
    R. W. Ricker, R. A. Hummel (1951) J Am Ceram Soc 34:271–79.CrossRefGoogle Scholar
  27. 27.
    T. K. Gupta, J. H. Jean (1994) J Mater Res 9:999–1009.CrossRefGoogle Scholar
  28. 28.
    S. Burk, B. Gorr and H.-J. Christ: Acta Mater., 2010, vol. 58, pp. 6154–65.CrossRefGoogle Scholar
  29. 29.
    K. Yoshimia, S. Nakatanic, T. Sudac, S. Hanadaa, and H. Habazakid: Intermetallics, 2002, 10:407–14.CrossRefGoogle Scholar
  30. 30.
    N. P. Bansal and R. H. Doremus (1986) Handbook of Glass Properties. Academic Press, New York.Google Scholar
  31. 31.
    P. Kopfstad (1972) Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxide. Wiley, New York.Google Scholar
  32. 32.
    S. Burk, B. Gorr, H.-J. Christ, D. Schliephake, M. Heilmaier, C. Hochmuth, and U. Glatzel: Scripta Mater., 2012, vol. 66, pp. 223–26.CrossRefGoogle Scholar
  33. 33.
    H. Mughrabi (2009) Mater. Sci. Technol. 25:191–204.CrossRefGoogle Scholar
  34. 34.
    R. Sakidja, H. Sieber, and J. H. Perepezko: Philos. Mag. Lett., 1999, vol. 79, pp. 351–57, 1999.CrossRefGoogle Scholar
  35. 35.
    P. Jéhanno, M. Heilmaier, H. Saage, M. Böning, H. Kestler, J. Freudenberger, and S. Drawin (2007) Mater. Sci. Eng. A 463:216–23.CrossRefGoogle Scholar
  36. 36.
    I. Rosales and J. H. Schneibel: Intermetallics, 2000, vol. 8, pp. 885–89.CrossRefGoogle Scholar
  37. 37.
    K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp. 591–602.CrossRefGoogle Scholar
  38. 38.
    R. Rosenkranz, G. Frommeyer, and W. Smarsly: Mater. Sci. Eng. A,, 1992, vol. 152, pp. 288–94.CrossRefGoogle Scholar
  39. 39.
    P. Jéhanno, M. Heilmaier, H. Saage, H. Heyse, M. Böning, H. Kestler, and J. H. Schneibel: Scripta Mater., 2006, vol. 55, pp. 525–28.CrossRefGoogle Scholar
  40. 40.
    H. J. Frost and M. F. Ashby (1982) Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford.Google Scholar
  41. 41.
    M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, C. Somsen, T. Depka, H.-J. Christ, B. Gorr, and S. Burk: JOM, 2009, vol. 61, pp. 61–67.CrossRefGoogle Scholar
  42. 42.
    P. Jain and K.S. Kumar: Acta Mater., 58, 2010, 2124–42.CrossRefGoogle Scholar
  43. 43.
    D. Sturm, M. Heilmaier, J. H. Schneibel, P. Jéhanno, B. Skrotzki, and H. Saage (2007) Mater. Sci. Eng. A 463:107–14.CrossRefGoogle Scholar
  44. 44.
    A. P. Alur, N. Chollacoop, and K. S. Kumar: Acta Materialia, 2004, vol. 52, pp. 5571–87.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Daniel Schliephake
    • 1
  • Maria Azim
    • 2
  • Katharina von Klinski-Wetzel
    • 1
  • Bronislava Gorr
    • 2
  • Hans-Jürgen Christ
    • 2
  • Hongbin Bei
    • 3
  • Easo P. George
    • 3
    • 4
  • Martin Heilmaier
    • 1
  1. 1.Institute for Applied MaterialsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Materials EngineeringUniversity of SiegenSiegenGermany
  3. 3.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations