Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 10, pp 4461–4465 | Cite as

Evaluation of Residual Stress Development at the Interface of Plasma Electrolytically Oxidized and Cold-Worked Aluminum

  • David Asquith
  • Aleksey Yerokhin
  • Neil James
  • John Yates
  • Allan Matthews
Communication

Abstract

Fatigue failure in hard oxide-coated aluminum is usually driven by rapid short crack propagation from the interface through the substrate; mitigation of this is possible by introducing interfacial compressive stresses. Combining cold work with hard oxide coating can improve their performance under conditions of simultaneous wear, corrosion, and fatigue. Three-dimensional strain fields in an aluminum alloy with combined cold work and PEO coating have been measured and mechanisms for stress redistribution presented. These comprise material consumption, expansive growth of oxide layers, and local annealing.

Keywords

Residual Stress Compressive Residual Stress Shot Peening Plasma Electrolytic Oxidation Plasma Electrolytic Oxidation Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

David Asquith and Aleksey Yerokhin acknowledge ESRF funding of experiment MA-243 (local contact Dr Alex Evans) and EPSRC grant number EP/H051317/1, respectively.

References

  1. 1.
    A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surface and Coatings Technology 122, 73–93 (1999).CrossRefGoogle Scholar
  2. 2.
    P. A. Dearnley, J. Gummersbach, H. Weiss, A. A. Ogwu, and T. J. Davies, Wear 225, 127–34 (1999).CrossRefGoogle Scholar
  3. 3.
    N. Godja, N. Kiss, C. Locker, A. Schindel, A. Gavrilovic, J. Wosik, R. Mann, J. Wendrinsky, A. Merstallinger, and G. E. Nauer, Tribology International 43, 1253–61 (2010).CrossRefGoogle Scholar
  4. 4.
    L. R. Krishna, A. S. Purnima, and G. Sundararajan, Wear 261, 1095–1101 (2006).CrossRefGoogle Scholar
  5. 5.
    X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, and A. Matthews, Surface & Coatings Technology 149, 245–51 (2002).CrossRefGoogle Scholar
  6. 6.
    C. Pritchard and P.R. Robinson (1969) Wear 13:361–68.CrossRefGoogle Scholar
  7. 7.
    G. Sabatini, L. Ceschini, C. Martini, J. A. Williams, and I. M. Hutchings, Materials & Design 31, 816–28 (2010).CrossRefGoogle Scholar
  8. 8.
    A. A. Voevodin, A. L. Yerokhin, V. V. Lyubimov, M. S. Donley, and J. S. Zabinski, Surface & Coatings Technology 86–87, 516–21 (1996).CrossRefGoogle Scholar
  9. 9.
    T. B. Wei, F. Y. Yan, and J. Tian, J. Alloy. Compd. 389, 169–76 (2005).CrossRefGoogle Scholar
  10. 10.
    F. Zhou, Y. Wang, H. Y. Ding, M. L. Wang, M. Yu, and Z. D. Dai, Surf. Coat. Technol. 202, 3808–14 (2008).CrossRefGoogle Scholar
  11. 11.
    R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, and R. L. Jones, Surf. Coat. Technol. 199, 158–67 (2005).CrossRefGoogle Scholar
  12. 12.
    L. Wen, Y. M. Wang, Y. Zhou, J. H. Ouyang, L. X. Guo, and D. C. Jia, Corros. Sci. 52, 2687–96 (2010).CrossRefGoogle Scholar
  13. 13.
    J. A. Curran and T. W. Clyne, Surf. Coat. Technol. 199, 177–83 (2005).CrossRefGoogle Scholar
  14. 14.
    J. A. Curran, H. Kalkanci, Y. Magurova, and T. W. Clyne, Surf. Coat. Technol. 201, 8683–87 (2007).CrossRefGoogle Scholar
  15. 15.
    D. J. Shen, Y. L. Wang, P. Nash, and G. Z. Xing, J. Mater. Process. Technol. 205, 477–81 (2008).CrossRefGoogle Scholar
  16. 16.
    D.T. Asquith, Y.H. Tai, C.X. Wong, J.R. Yates, A. Matthews, and A.L. Yerokhin: 17th European Conference on Fracture, 2008.Google Scholar
  17. 17.
    Y. J. Guan, Y. Xia, and F. T. Xu, Surf Coat Technol 202, 4204–09 (2008).CrossRefGoogle Scholar
  18. 18.
    B. Rajasekaran, S. G. S. Raman, L. R. Krishna, S. V. Joshi, and G. Sundararajan, Surf Coat Technol 202, 1462–69 (2008).CrossRefGoogle Scholar
  19. 19.
    F. S. Silva, Eng Fail Anal 13, 480–92 (2006).CrossRefGoogle Scholar
  20. 20.
    N.P. Wasekar, N. Ravi, P.S. Babu, L.R. Krishna, and G. Sundararajan (2010) Metall. Mater. Trans. A 41A:255–65.CrossRefGoogle Scholar
  21. 21.
    W. B. Xue, C. Wang, Z. W. Deng, R. Y. Chen, Y. L. Li, and T. H. Zhang, J. Phys. Condens. Matter 14, 10947–52 (2002).CrossRefGoogle Scholar
  22. 22.
    E. Cirik and K. Genel, Surf. Coat. Technol. 202, 5190–5201 (2008).CrossRefGoogle Scholar
  23. 23.
    Shahzad M, Chaussumiera M, Chieragattia R, Mabrua C, and Aria F R (2010) J. Mater. Process. Technol. 210:1821–26.CrossRefGoogle Scholar
  24. 24.
    D. W. Hammond and S. A. Meguid: Eng. Fract. Mech. 37:373–87 (1990).CrossRefGoogle Scholar
  25. 25.
    D. T. Asquith, A. L. Yerokhin, J. R. Yates, and A. Matthews, Thin Solid Films 515, 1187–91 (2006).CrossRefGoogle Scholar
  26. 26.
    B. Lonyuk, I. Apachitei, and J. Duszczyk, Surface & Coatings Technology 201, 8688–94 (2007).CrossRefGoogle Scholar
  27. 27.
    D. T. Asquith, A. L. Yerokhin, J. R. Yates, and A. Matthews, Thin Solid Films 516, 417–21 (2007).CrossRefGoogle Scholar
  28. 28.
    R. H. U. Khan, A. Yerokhin, X. Li, H. Dong, and A. Matthews, Surf. Coat. Technol. 205, 1679–88 (2010).CrossRefGoogle Scholar
  29. 29.
    R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, Surface and Coatings Technology 200, 1580–86 (2005).CrossRefGoogle Scholar
  30. 30.
    C. Kirchlechner, K.J. Martinschitz, R. Daniel, C. Mitterer, J. Donges, A. Rothkirch, M. Klaus, C. Genzel, and J. Keckes (2010) Scripta Mater. 62:774–77.CrossRefGoogle Scholar
  31. 31.
    D.T. Asquith: Residual Stress and Fatigue in Cold-Worked, Hard-Coated 2024-T351 Aluminium Alloy, University of Sheffield, 2008.Google Scholar
  32. 32.
    A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, and A. Matthews, Surface and Coatings Technology 199, 150–57 (2005).CrossRefGoogle Scholar
  33. 33.
    D. J. Hughes, M. N. James, D. G. Hattingh, and P. J. Webster, Journal of Neutron Research 11, 289–93 (2003).CrossRefGoogle Scholar
  34. 34.
    K. T. Habazaki, Philos. Mag. A 80, 1027–42 (2000).CrossRefGoogle Scholar
  35. 35.
    L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, and A. Matthews, Electrochim. Acta 49, 2085–95 (2004).CrossRefGoogle Scholar
  36. 36.
    N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529–82 (1923).Google Scholar
  37. 37.
    ASM Metals Handbook, ASM International, Materials Park, 1997.Google Scholar
  38. 38.
    M. N. James, D. J. Hughes, Z. Chen, H. Lombard, D. G. Hattingh, D. Asquith, J. R. Yates, and P. J. Webster, Eng. Fail. Anal. 14, 384–95 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • David Asquith
    • 1
  • Aleksey Yerokhin
    • 2
  • Neil James
    • 3
    • 4
  • John Yates
    • 5
  • Allan Matthews
    • 2
  1. 1.Department of Engineering and MathematicsSheffield Hallam UniversitySheffieldU.K.
  2. 2.Department of Materials Science and EngineeringUniversity of SheffieldSheffieldU.K.
  3. 3.School of Marine Science & EngineeringUniversity of PlymouthPlymouthU.K.
  4. 4.Department of Mechanical EngineeringNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
  5. 5.Centre for Modelling and Simulation, School of Mechanical, Aerospace and Civil EngineeringUniversity of ManchesterManchesterU.K.

Personalised recommendations