Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 9, pp 4031–4036 | Cite as

Design of Hierarchical Cellular Metals Using Accumulative Bundle Extrusion

  • Marat I. Latypov
  • Dong Jun Lee
  • Ha-Guk Jeong
  • Jong Beom Lee
  • Hyoung Seop Kim
Communication

Abstract

This letter introduces a method for designing hierarchical cellular metals employing multipass accumulative bundle extrusion and selective dissolving. The method provides several degrees of freedom for manipulating both the cell-wall properties and architecture of cellular materials. Cellular copper was produced and analyzed as an example of implementing the proposed method. The material hierarchy that can be formed and controlled by means of multipass accumulative extrusion assures strength and enables the material to perform the prescribed functions.

Keywords

Relative Density Functional Grade Cellular Material Selective Removal High Specific Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

The authors are grateful to Dr. Maxim Yutkin and Dr. Sergey Sapchenko for discussions at the early stages of the current study. The current study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials (10037206) funded by the Ministry of Knowledge Economy, Korea.

References

  1. 1.
    L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997.Google Scholar
  2. 2.
    D. N. Lee and H. S. Kim: Powder Metall., 1992, vol. 35, pp. 275–79.Google Scholar
  3. 3.
    H. Utsunomiya, H. Koh, J. Miyamoto, and T. Sakai: Adv. Eng. Mater., 2008, vol. 10, pp 826–29.CrossRefGoogle Scholar
  4. 4.
    R. Lakes: Nature, 1993, vol. 361, pp. 511–15.CrossRefGoogle Scholar
  5. 5.
    C.M. Taylor, C.W. Smith, W. Miller, and K.E. Evans: Int. J. Solids Struct., 2010, vol. 48, pp. 1330–39.CrossRefGoogle Scholar
  6. 6.
    A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley: Prog. Mater. Sci., 2001, vol. 46, 309–27.CrossRefGoogle Scholar
  7. 7.
    N.M. Pugno and A. Carpinteri: Philos. Mag. Lett., 2008, vol. 88, pp. 397–405.CrossRefGoogle Scholar
  8. 8.
    M.J. Silva and L.J. Gibson: Int. J. Mech. Sci., 1997, vol. 39, pp. 549–63.CrossRefGoogle Scholar
  9. 9.
    F.P. Levi: J. Appl. Phys., 1960, vol. 320, pp. 1469–71.CrossRefGoogle Scholar
  10. 10.
    L. Thilly, F. Lecouturier, G. Coffe, J. P. Peyrade, and S. Askénazy: Physica B, 2001, vol. 294–295, pp. 648–52.CrossRefGoogle Scholar
  11. 11.
    V. Vidal, L. Thilly, F. Lecouturier, and P. O. Renault: Scripta Mater., 2007, vol. 57, pp. 245–48.CrossRefGoogle Scholar
  12. 12.
    M. Thirumurugan, S. A. Rao, S. Kumaran, and T. S. Rao: J. Mater. Process. Technol., 2011, vol. 211, pp. 1637–42.CrossRefGoogle Scholar
  13. 13.
    T. Lee, C. H. Park, S. Y. Lee, I. H. Son, D. L. Lee, and C. S. Lee: Met. Mater. Int., 2012, vol. 18, pp. 391–96.CrossRefGoogle Scholar
  14. 14.
    Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science, 2008, vol. 320, pp. 1057–60.CrossRefGoogle Scholar
  15. 15.
    T. Marr, J. Freudenberger, D. Seifert, H. Klauss, J. Romberg, I. Okulov, A. Eschke, C-G. Oertel, W. Skrotzki, U. Kuehn, J. Eckert, and L. Schultz: Metals, 2011, vol. 1, pp. 79–97.CrossRefGoogle Scholar
  16. 16.
    T.L. Warren: J. Appl. Phys., 1990, vol. 67, pp. 7591–94.CrossRefGoogle Scholar
  17. 17.
    M. Raney: US Patent #1,628,190, 1927.Google Scholar
  18. 18.
    T. Wada, K. Yubuta, A. Inoue, and H. Kato: Mater. Lett., 2011, 65, pp. 1076–78.CrossRefGoogle Scholar
  19. 19.
    G. Gottstein and U. F. Kocks: Acta Metall., 1983, vol. 31, pp. 175–88.CrossRefGoogle Scholar
  20. 20.
    C. M. Taylor, C. W. Smith, W. Miller, and K. E. Evans: Compos. Struct., 2012, vol. 94, pp. 2296–2305.CrossRefGoogle Scholar
  21. 21.
    A. Ajdari, P. Canavan, H. Nayeb-Hashemi, and G. Warner: Mater. Sci. Eng. A, 2009, vol. 499, pp. 434–39.CrossRefGoogle Scholar
  22. 22.
    C.C. Bampton: US Patent #5,620,537, 1997.Google Scholar
  23. 23.
    K. M. Ryu, J. Y. An, W. S. Cho, Y. C. Yoo, and H. S. Kim: Mater. Trans., 2005, vol. 46, pp. 622–25.CrossRefGoogle Scholar
  24. 24.
    H. Gilani, S. Jafari, R. Gholami, A. Habibolahzadeh, and M. Mirshahi: Met. Mater. Int., 2012, vol. 18, pp. 327–33.CrossRefGoogle Scholar
  25. 25.
    B. H. Son, J. G. Hong, Y. T. Hyun, S. C. Bae, and S. E. Kim: J. Korean Inst. Met. Mater., 2012, vol. 50, pp. 100–06.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Marat I. Latypov
    • 1
  • Dong Jun Lee
    • 1
  • Ha-Guk Jeong
    • 2
  • Jong Beom Lee
    • 2
  • Hyoung Seop Kim
    • 1
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Production Technology R&D DepartmentKorea Institute of Industrial TechnologyIncheonRepublic of Korea

Personalised recommendations