Metallurgical and Materials Transactions A

, Volume 44, Issue 8, pp 3423–3427 | Cite as

Prediction of Martensite Start Temperature in Alloy Steels with Different Grain Sizes

  • Seok-Jae Lee
  • Kyong-Su Park

A new equation to predict the martensite start (M s) temperature was proposed considering the effects of the chemical composition and grain size of austenite in alloy steels. The calculation results demonstrated that the addition of an alloying element decreased the M s temperature, and austenite with smaller grain sizes resulted in a remarkable reduction of the M s temperature. The variation of the M s temperature calculated by the proposed equation was in good agreement with experimental data of alloy steels with various grain sizes.


Austenite Martensite Martensite Transformation Alloy Steel Thermodynamic Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Krauss: Steels—Processing, Structure, and Performance, ASM International, Materials Park, OH, 2005, pp. 23–7.Google Scholar
  2. 2.
    P. Payson and C.H. Savage: Trans. ASM, 1944, vol. 33, pp. 261–75.Google Scholar
  3. 3.
    E.S. Rowland and S.R. Lyle: Trans. ASM, 1946, vol. 37, pp. 27–47.Google Scholar
  4. 4.
    R.A. Grange and H.M. Stewart: Trans. AIME, 1946, vol. 167, pp. 467–90.Google Scholar
  5. 5.
    A.E. Nehrenberg: Trans. AIME, 1946, vol. 167, pp. 494–8.Google Scholar
  6. 6.
    W. Steven and A.G. Haynes: JISI, 1956, vol. 183, pp. 349–59.Google Scholar
  7. 7.
    K.W. Andrews: JISI, 1965, vol. 203, pp. 721–7.Google Scholar
  8. 8.
    K. Ishida: J. Alloys Comp., 1995, vol. 220, pp. 126–31.CrossRefGoogle Scholar
  9. 9.
    C. Capdevila, F.G. Caballero, and C.G. de Andres: ISIJ Int., 2002, vol. 42, pp. 894–902.CrossRefGoogle Scholar
  10. 10.
    M. Umemoto and W.S. Owen: Metall. Trans., 1974, vol. 5, pp. 2041–6.CrossRefGoogle Scholar
  11. 11.
    S.J. Lee and Y.K. Lee: Mater. Sci. Forum, 2005, vol. 475–479, pp. 3169–72.CrossRefGoogle Scholar
  12. 12.
    E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Scripta Mater., 2007, vol. 56, pp. 421–4.CrossRefGoogle Scholar
  13. 13.
    A. García-Junceda, C. Capdevila, F.G. Caballero, and C. Garcis de Andrés: Scripta Mater., 2008, vol. 58, pp. 134–7.CrossRefGoogle Scholar
  14. 14.
    H.S. Yang and H.K.D.H. Bhadeshia: Scripta Mater., 2009, vol. 60, pp. 493–5.CrossRefGoogle Scholar
  15. 15.
    S.J. Lee, S. Lee, and B.C. De Cooman: Steel Res. Int., 2013 (in press).Google Scholar
  16. 16.
    G.F. Vander Voort: Atlas of Time–Temperature Diagrams for Irons and Steels. 4th ed., ASM International, Metals Park, OH, 2007.Google Scholar
  17. 17.
    J. Wang, P.J. van der Wolk, and S. van der Zwaag: Metall. Trans. JIM, 2000, vol. 41, pp. 761–8.Google Scholar
  18. 18.
    J.M. Jang, S.J. Kim, N.H. Kang, K.M. Cho, and D.W. Suh: Met. Mater. Inter., 2009, vol. 15, pp. 909–16.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Division of Advanced Materials EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Next Generation Products Research Group, Technical Research LaboratoriesPOSCOPohangRepublic of Korea

Personalised recommendations