Metallurgical and Materials Transactions A

, Volume 44, Issue 9, pp 4346–4359

Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures

  • Dmitry Orlov
  • Arnaud Pougis
  • Rimma Lapovok
  • Laszlo S. Toth
  • Ilana B. Timokhina
  • Peter D. Hodgson
  • Arunansu Haldar
  • Debashish Bhattacharjee
Article

Abstract

IF steel sheets were processed by conventional symmetric and asymmetric rolling (ASR) at ambient temperature. The asymmetry was introduced in a geometric way using differential roll diameters with a number of different ratios. The material strength was measured by tensile testing and the microstructure was analyzed by optical and transmission electron microscopy as well as electron backscatter diffraction (EBSD) analysis. Texture was also successfully measured by EBSD using large surface areas. Finite element (FE) simulations were carried out for multiple passes to obtain the strain distribution after rolling. From the FE results, the velocity gradient along selected flow lines was extracted and the evolution of the texture was simulated using polycrystal plasticity modeling. The best mechanical properties were obtained after ASR using a roll diameter ratio of 2. The textures appeared to be tilted up to 12 deg around the transverse direction, which were simulated with the FE-combined polycrystal plasticity modeling in good agreement with measurements. The simulation work revealed that the shear component introduced by ASR was about the same magnitude as the normal component of the rolling strain tensor.

References

  1. 1.
    Y. B. Park, L. Kestens, and J. J. Jonas: ISIJ Int., 2000, vol. 40, no. 4, pp. 393-401.CrossRefGoogle Scholar
  2. 2.
    K. Ushioda, S. Takebayashi, and Y. R. Abe: Materials and Manufacturing Processes, 2010/03/22, 2010, vol. 25, no. 1-3, pp. 185-194.CrossRefGoogle Scholar
  3. 3.
    R. Saha, and R. K. Ray: ISIJ Int., 2008, vol. 48, no. 7, pp. 976-983.CrossRefGoogle Scholar
  4. 4.
    R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu: JOM, April 2006, 2006, vol. 58, no. 4, pp. 33-39.Google Scholar
  5. 5.
    J.-K. Kim, Y.-K. Jee, M.-Y. Huh, and H.-T. Jeong: J. Mater. Sci., 2004, vol. 39, no. 16, pp. 5365-5369.CrossRefGoogle Scholar
  6. 6.
    T. Gow-Yi: J. Mater. Process. Tech., 1998, vol. 86, no. 13, pp. 271-277.CrossRefGoogle Scholar
  7. 7.
    H. Jin, and D. J. Lloyd: Mat. Sci. Eng. A, 2007, vol. 465, no. 12, pp. 267-273.CrossRefGoogle Scholar
  8. 8.
    H. Utsunomiya, T. Ueno, and T. Sakai: Scripta Mater., 2007, vol. 57, no. 12, pp. 1109-1112.CrossRefGoogle Scholar
  9. 9.
    T. Sakai, K. Yoneda, and S. Osugi: Mater. Sci. Forum., 2005, vol. 495-497, pp. 597-602.CrossRefGoogle Scholar
  10. 10.
    R. Lapovok, L. S. Tóth, M. Winkler, and S. L. Semiatin: J. Mater. Res., 2009, vol. 24, no. 2, pp. 459-469.CrossRefGoogle Scholar
  11. 11.
    D. Orlov, R. Lapovok, L. S. Tóth, I. B. Timokhina, P. D. Hodgson, D. Bhattacharjee, and A. Haldar: Mater. Sci. Forum., June, 2010, 2010, vol. 654-656, pp. 1255-1258.CrossRefGoogle Scholar
  12. 12.
    L. S. Tóth, B. Beausir, D. Orlov, R. Lapovok, and A. Haldar: J. Mater. Process. Tech., February 2012, 2012, vol. 212, no. 2, pp. 509-515.CrossRefGoogle Scholar
  13. 13.
    R. Lapovok, D. Orlov, I. B. Timokhina, A. Pougis, L. S. Tóth, P. D. Hodgson, A. Haldar, and D. Bhattacharjee: Metall. Mater. Trans. A, 2012, vol. 43, no. 4, pp. 1328-1340.CrossRefGoogle Scholar
  14. 14.
    D. Orlov, R. Lapovok, L. S. Tóth, I. B. Timokhina, P. D. Hodgson, D. Bhattacharjee, and A. Haldar: Mater. Sci. Forum., 2012, vol. 706 - 709, pp. 2788-2793.CrossRefGoogle Scholar
  15. 15.
    D. Orlov, Y. Todaka, M. Umemoto, and N. Tsuji: Mat. Sci. Eng. A, 15 January 2009, 2009, vol. 499, no. 1-2, pp. 427433.CrossRefGoogle Scholar
  16. 16.
    D. Orlov, Y. Todaka, M. Umemoto, and N. Tsuji: Scripta Mater., 2011, vol. 64, no. 6, pp. 498-501.CrossRefGoogle Scholar
  17. 17.
    D. Orlov, P. P. Bhattacharjee, Y. Todaka, M. Umemoto, and N. Tsuji: Scripta Mater., 2009, vol. 60, no. 10, pp. 893-896.CrossRefGoogle Scholar
  18. 18.
    D. Orlov, R. Lapovok, L.S. Tóth, I.B. Timokhina, P. D. Hodgson, A. Haldar, and D. Bhattacharjee: Metall. Mater. Trans. A, 2012, under review.Google Scholar
  19. 19.
    B. Hutchinson: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, June 15, 1999, 1999, vol. 357, no. 1756, pp. 1471-1485.CrossRefGoogle Scholar
  20. 20.
    B. L. Li, A. Godfrey, Q. C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, no. 4, pp. 1069-1081.CrossRefGoogle Scholar
  21. 21.
    N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada: ISIJ Int., May 8, 2008, 2008, vol. 48, no. 8, pp. 1114-1121.CrossRefGoogle Scholar
  22. 22.
    O. Saray, G. Purcek, I. Karaman, T. Neindorf, and H. J. Maier: Mat. Sci. Eng. A, 2011, vol. 528, no. 21, pp. 6573-6583.CrossRefGoogle Scholar
  23. 23.
    D. Vanderschueren, N. Yoshinaga, and K. Koyama: ISIJ Int., 1996/08/15, 1996, vol. 36, no. 8, pp. 1046-1054.CrossRefGoogle Scholar
  24. 24.
    L. Tóth, J. Jonas, D. Daniel, and R. Ray: Metall. Trans. A, 1990, vol. 21, no. 11, pp. 2985-3000.Google Scholar
  25. 25.
    L. S. Tóth, Y. Estrin, R. Lapovok, and C. Gu: Acta Mater., 2010, vol. 58, no. 5, pp. 1782-1794.CrossRefGoogle Scholar
  26. 26.
    S. H. Lee, and D. N. Lee: Int. J. Mech. Sci., 2001, vol. 43, no. 9, pp. 1997-2015.CrossRefGoogle Scholar
  27. 27.
    J. Sidor, A. Miroux, R. Petrov, and L. Kestens: Acta Mater., 2008, vol. 56, no. 11, pp. 2495-2507.CrossRefGoogle Scholar
  28. 28.
    K.-M. Lee, and H.-C. Lee: J. Mater. Process. Tech., 2010, vol. 210, no. 12, pp. 1574-1579.CrossRefGoogle Scholar
  29. 29.
    S. Wroński, K. Wierzbanowski, B. Bacroix, M. Wróbel, and M. Wroński: Mater. Sci. Forum., 2010, vol. 638-642, pp. 2811-2816.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Dmitry Orlov
    • 1
    • 7
  • Arnaud Pougis
    • 2
    • 3
  • Rimma Lapovok
    • 4
  • Laszlo S. Toth
    • 2
    • 3
  • Ilana B. Timokhina
    • 5
  • Peter D. Hodgson
    • 5
  • Arunansu Haldar
    • 6
  • Debashish Bhattacharjee
    • 6
  1. 1.Department of Materials EngineeringMonash UniversityClaytonAustralia
  2. 2.Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, UMR 7239, CNRS/Université de LorraineIle du SaulcyFrance
  3. 3.Laboratory of Excellence “DAMAS”: ‘Design of Alloy Metals for low-mAss Structures’Université de Lorraine - MetzIle du SaulcyFrance
  4. 4.Centre for Advanced Hybrid Materials, Department of Materials EngineeringMonash UniversityClaytonAustralia
  5. 5.Institute for Frontier Materials, GTP ResearchDeakin UniversityGeelongAustralia
  6. 6.R&D Division, Tata Steel EuropeLondonUK
  7. 7.Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan

Personalised recommendations