Metallurgical and Materials Transactions A

, Volume 45, Issue 3, pp 1112–1123 | Cite as

Phase Equilibria, Microstructure, and High-Temperature Strength of TiC-Added Mo-Si-B Alloys

  • Shimpei Miyamoto
  • Kyosuke YoshimiEmail author
  • Seong-Ho Ha
  • Takahiro Kaneko
  • Junya Nakamura
  • Tetsuya Sato
  • Kouichi Maruyama
  • Rong Tu
  • Takashi Goto
Symposium: Beyond Nickel Base Superalloys II


TiC was added to Mo-Si-B alloys using a conventional Ar arc-melting technique, and the phase equilibria, microstructure evolution, and high-temperature strength at 1673 K (1400 °C) were investigated. The primary phase changed to Mo solid solution (Moss), Mo5SiB2 (T2), or TiC depending on the composition. Following the primary phase solidification, a Moss + TiC, Moss + T2, or Moss + T2 + TiC + Mo2C eutectic reaction took place as the secondary solidification step. In some alloys, Moss + T2 + TiC and Moss + T2 + Mo2C eutectic reactions were present as higher-order solidification steps. After annealing at 2073 K (1800 °C) for 24 hours, Moss, T2, TiC, and Mo2C coexisted stably with microstructural coarsening. The coarsening rate was much faster in an alloy with no TiC dispersion, suggesting that TiC has a strong pinning effect on the grain boundary and interface migration. Compression tests conducted at 1673 K (1400 °C) revealed strength properties of almost all the alloys that were better than those of the Mo-Hf-C alloy (MHC). Alloy densities were 9 g/cm3 or less, which is lighter than pure Mo and MHC (≥10 g/cm3) and competitive with Ni-base superalloys. TiC-added Mo-Si-B alloys are promising candidates for ultrahigh-temperature materials beyond Ni-base superalloys.


Primary Phase Ultimate Compressive Strength Colony Boundary Eutectic Area Onset Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the funding program for Next Generation World-Leading Researchers (NEXT Program) (No. GR017) and a Grant-in-Aid for Scientific Research (No. 23-4805) from the Japan Society for the Promotion of Science (JSPS).


  1. 1.
    D.M. Dimiduk and J.H. Perepezko: MRS Bulletin, 2003, vol. 28, pp. 639–45.CrossRefGoogle Scholar
  2. 2.
    R. Mitra: Int. Mater. Rev., 2006, vol. 51, pp. 13–64.CrossRefGoogle Scholar
  3. 3.
    M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, Ch. Somsen, T. Depka, H.-J. Christ, B. Gorr, and S. Burk: JOM, 2009, vol. 61, pp. 61–7.Google Scholar
  4. 4.
    C.A. Nunes, R. Sakidja and J.H. Perepezko: in Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, TMS, Warrendale, PA, 1997, pp. 831–39.Google Scholar
  5. 5.
    Y. Yang and Y.A. Chang: Intermetallics, 2005, vol. 13, pp. 121–8.CrossRefGoogle Scholar
  6. 6.
    J.H. Schneibel, C.T. Liu, D.S. Easton, and C.A. Carmichael: Mater. Sci. Eng. A, 1999, vol. 261, pp.78–83.CrossRefGoogle Scholar
  7. 7.
    J.H. Schneibel, M.J. Kramer, and D.S. Easton: Scripta Mater., 2002, vol. 46, pp.217–21.CrossRefGoogle Scholar
  8. 8.
    K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada: Intermetallics, 2003, vol. 11, pp.787–94.CrossRefGoogle Scholar
  9. 9.
    K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp.591–602.CrossRefGoogle Scholar
  10. 10.
    K. Ito, M. Kumagai, T. Hayashi, and M. Yamaguchi: Scripta Mater., 2003, vol. 49, pp.285–90.CrossRefGoogle Scholar
  11. 11.
    A.P. Alur, N. Chollacoop, and K.S. Kumar: Acta Mater., 2004, vol. 52, pp.5571–87.CrossRefGoogle Scholar
  12. 12.
    P. Jain and K.S. Kumar: Acta Mater., 2010, vol. 58, pp.2124–42.CrossRefGoogle Scholar
  13. 13.
    K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, and H. Habazaki: Intermetallics, 2002, vol. 10, pp.407–14.CrossRefGoogle Scholar
  14. 14.
    F.A. Rioult, S.D. Imhoff, R. Sakidja, and J.H. Perepezko: Acta Mater., 2009, vol. 57, pp.4600–13.CrossRefGoogle Scholar
  15. 15.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Metall. Mater. Trans. A, 2005, vol. 36A, pp.2393–402.CrossRefGoogle Scholar
  16. 16.
    A. Sato, A.-C. Yeh, T. Kobayashi, T. Yokokawa, H. Harada, T. Murakumo, and J.X. Zhang: Energy Mater., 2007, vol. 2, pp.19–25.CrossRefGoogle Scholar
  17. 17.
    R.A. Lula: Heat-Resistant Materials, ASM International, Materials Park, OH, 1997, pp. 361–82.Google Scholar
  18. 18.
    V.N. Eremenko and T.Ya. Velikanova: Handbook of Ternary Alloy Phase Diagrams, vol. 6, ASM International, Metals Park, OH, 1995, pp. 7092.Google Scholar
  19. 19.
    H. Kurishita, Reiji Matsubara, J. SHiraishi, and H. Yoshinaga: Mater. Trans. JIM, 1986, vol. 27, pp.858–69.Google Scholar
  20. 20.
    W.M. Haynes: Handbook of Chemistry and Physics, 93rd ed., CRC Press, Boca Raton, FL, 2012, pp. 4–96.Google Scholar
  21. 21.
    Y. Yang, Y.A. Chang, L. Tan, and W. Cao: Acta Mater., 2005, vol. 53, pp.1711–20.CrossRefGoogle Scholar
  22. 22.
    R. Sakidja and J.H. Perepezko: Metall. Mater. Trans. A, 2005, vol. 36A, 507–14.CrossRefGoogle Scholar
  23. 23.
    R. Sakidja and J.H. Perepezko: J. Nucl. Mater., 2007, vol. 366, pp.407–16.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Shimpei Miyamoto
    • 1
    • 2
  • Kyosuke Yoshimi
    • 3
    Email author
  • Seong-Ho Ha
    • 3
    • 4
  • Takahiro Kaneko
    • 1
  • Junya Nakamura
    • 1
  • Tetsuya Sato
    • 1
    • 5
  • Kouichi Maruyama
    • 3
  • Rong Tu
    • 6
    • 7
  • Takashi Goto
    • 6
  1. 1.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan
  2. 2.IHI CorporationAioiJapan
  3. 3.Graduate School of EngineeringTohoku UniversitySendaiJapan
  4. 4.Korea Institute of Industrial TechnologyInchonSouth Korea
  5. 5.Central Japan Railway CompanyTokyoJapan
  6. 6.Institute for Materials Research, Tohoku UniversitySendaiJapan
  7. 7.Wuhan University of TechnologyHubeiP.R. China

Personalised recommendations