Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 9, pp 4230–4238 | Cite as

Modeling Grain Size and Strain Rate in Linear Friction Welded Waspaloy

  • Ahmad ChamanfarEmail author
  • Mohammad Jahazi
  • Javad Gholipour
  • Priti Wanjara
  • Stephen Yue
Article

Abstract

The high-temperature deformation behavior of the Ni-base superalloy, Waspaloy, using uniaxial isothermal compression testing was investigated at temperatures above the γ′ solvus, 1333 K, 1373 K, and 1413 K (1060 °C, 1100 °C, and 1140 °C) for constant true strain rates of 0.001, 0.01, 0.1, and 1 s−1 and up to a true strain of 0.83. Flow softening and microstructural investigation indicated that dynamic recrystallization took place during deformation. For the investigated conditions, the strain rate sensitivity factor and the activation energy of hot deformation were 0.199 and 462 kJ/mol, respectively. Constitutive equations relating the dynamic recrystallized grain size to the deformation temperature and strain rate were developed and used to predict the grain size and strain rate in linear friction-welded (LFWed) Waspaloy. The predictions were validated against experimental findings and data reported in the literature. It was found that the equations can reliably predict the grain size of LFWed Waspaloy. Furthermore, the estimated strain rate was in agreement with finite element modeling data reported in the literature.

Keywords

Deformation Temperature Solution Heat Treatment Oscillation Phase Weld Interface Flow Softening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.E. Bailey: 2nd Int. Conf. on Superalloys-Processing, Seven Springs, PA, Battelle Columbus Labs., Columbus, OH, 1972, pp. J1–J21.Google Scholar
  2. 2.
    A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 729–44.CrossRefGoogle Scholar
  3. 3.
    A.K. Abdul Jawwad, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1637–45.CrossRefGoogle Scholar
  4. 4.
    V. Siva Kumar, G. Kelekanjeri, and R.A. Gerhardt: Electrochim. Acta, 2006, vol. 51, pp. 1873–80.CrossRefGoogle Scholar
  5. 5.
    Technical Data Sheet, Allegheny Technologies Incorporated (ATI), Pittsburgh, PA, 2009.Google Scholar
  6. 6.
    I. Bhamji, M. Preuss, P.L. Threadgill, and A.C. Addison: Mater. Sci. Technol., 2011, vol. 27, pp. 2–12.CrossRefGoogle Scholar
  7. 7.
    R. Turner, J.-C. Gebelin, R.M. Ward, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 3792–3803.CrossRefGoogle Scholar
  8. 8.
    A. Vairis and M. Frost: Wear, 1998, vol. 217, pp. 117–31.CrossRefGoogle Scholar
  9. 9.
    A.A. Guimaraes and J.J. Jonas: Metall. Trans. A, 1981, vol. 12A, pp. 1655–66.Google Scholar
  10. 10.
    H.J. McQueen, G. Gurewitz, and S. Fulop: High Temp. Technol., 1983, vol. 1, pp. 131–38.Google Scholar
  11. 11.
    S.L. Semiatin, D.S. Weaver, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey, R.C. Kramb, and M.M. Antony, Metall. Mater. Trans. A, 2004, vol. 35A, pp. 679–93.CrossRefGoogle Scholar
  12. 12.
    G. Shen, S.L. Semiatin, and R. Shivpuri: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1795–1803.CrossRefGoogle Scholar
  13. 13.
    A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue: Mater. Sci. Eng. A, 2012, vol. 555, pp. 117–30.Google Scholar
  14. 14.
    S. Xu, J.I. Dickson, and A.K. Koul: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2687–95.CrossRefGoogle Scholar
  15. 15.
    S. Olovsjö, A. Wretland, and G. Sjöberg: Int. J. Adv. Manuf. Technol., 2010, vol. 50, pp. 907–15.CrossRefGoogle Scholar
  16. 16.
    B. Lindsley and X. Pierron: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, Warrendale, PA, 2000, pp. 59–68.Google Scholar
  17. 17.
    ASTM Standard E 562-02, Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 2002, vol. 3 (1), pp. 1–7.Google Scholar
  18. 18.
    H. Monajati, M. Jahazi, S. Yue, and A.K. Taheri: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 895–905.CrossRefGoogle Scholar
  19. 19.
    A.R. Mashreghi, H. Monajatizadeh, M. Jahazi, and S. Yue: Mater. Sci. Technol., 2004, vol. 20, pp. 161–66.CrossRefGoogle Scholar
  20. 20.
    S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Mater. Sci. Eng. A, 2000, vol. 293, pp. 198–207.CrossRefGoogle Scholar
  21. 21.
    Y.-S. Na, S.-J. Choe, and N.-K. Park: The International Symposium on Hot Workability of Steels and Light Alloys-Composites, Montreal, Canada, 1996, pp. 227–36.Google Scholar
  22. 22.
    J.P. Hu, J.Y. Zhuang, J.H. Du, Q. Deng, D. Feng, Z.Y. Zhong, P. Janschek, and J. Kramer: Acta Metall. Sin., 2001, vol. 14, pp. 205–11.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Ahmad Chamanfar
    • 1
    • 2
    • 3
    Email author
  • Mohammad Jahazi
    • 3
  • Javad Gholipour
    • 2
  • Priti Wanjara
    • 2
  • Stephen Yue
    • 1
  1. 1.Department of Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Metallic Products ManufacturingNational Research Council Canada AerospaceMontrealCanada
  3. 3.Département de Génie MécaniqueÉcole de Technologie SupérieureMontrealCanada

Personalised recommendations