Metallurgical and Materials Transactions A

, Volume 44, Issue 8, pp 3866–3881 | Cite as

Evolution of Microstructure and Texture During Deformation and Recrystallization of Heavily Rolled Cu-Cu Multilayer

Article

Abstract

A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.

References

  1. 1.
    L.H. Friedman: Scripta Mater., 2004, vol. 50, pp. 763–767.CrossRefGoogle Scholar
  2. 2.
    F. Spaepen and D.Y.W. Yu: Scripta Mater., 2004, vol. 50, pp. 729–732.CrossRefGoogle Scholar
  3. 3.
    R.G. Hoagland, R.J. Kurtz, and C.H. Henager: Scripta Mater., 2004, vol. 50, pp. 775–779.CrossRefGoogle Scholar
  4. 4.
    R. G. Hoagland, T. E. Mitchell, J. P. Hirth, and H. Kung: Phil. Mag., 2002, vol. 82, pp. 643–664.Google Scholar
  5. 5.
    W.D. Nix: Scripta Mater., 1998, vol. 39, pp. 545–554.CrossRefGoogle Scholar
  6. 6.
    K.O. Schweitz, J.Chevallier, J. Bottiger, W. Matz, and N. Schell: Phil. Mag. A, 2001, vol. 81, pp. 2021–2032.CrossRefGoogle Scholar
  7. 7.
    P. M. Anderson, J. F. Bingert, A. Misra, and J. P. Hirth: Acta Materia., 2003, vol. 51, pp. 6059–6075.CrossRefGoogle Scholar
  8. 8.
    Y. Jyoko, S. Kashiwabara, and Y. Hayashi: J. Electrochem. Soc., 1997, vol. 144, pp. L5–L8.CrossRefGoogle Scholar
  9. 9.
    I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, D.J. Alexander, and C.T. Necker: I. J. Plasticity, 2011, vol. 27, pp. 121–146.CrossRefGoogle Scholar
  10. 10.
    J. Wang, I. J. Beyerlein, N. A. Mara, and D. Bhattacharyya: Scripta Mater., 2011, vol. 64, pp. 1083–1086.CrossRefGoogle Scholar
  11. 11.
    S.C.V. Lim and A.D. Rollett: Mater. Sci. Engg. A, 2009, vol. 520, pp. 189–196.CrossRefGoogle Scholar
  12. 12.
    Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–583.CrossRefGoogle Scholar
  13. 13.
    N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893–899.CrossRefGoogle Scholar
  14. 14.
    H. Sieber, J. S. Park, J. Weissmüller and J. H. Perepezko: Acta mater., 2001, vol. 49, pp. 1139–1151.CrossRefGoogle Scholar
  15. 15.
    Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad and H.G. Brokmeier: Scripta Mater., 2009, vol. 61, pp. 717–720.CrossRefGoogle Scholar
  16. 16.
    L. Chen, Q. Shi, D. Chen, S. Zhou, J. Wang, and X. Luo: Mater. Sci. Engg. A, 2009, vol. 508, pp. 37–42.CrossRefGoogle Scholar
  17. 17.
    M. Shaarbaf and M. R. Toroghinejad: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1693–1700.CrossRefGoogle Scholar
  18. 18.
    S. A. Hosseini and H. Danesh Manesh: Materials and Design, 2009, vol. 30, pp. 2911–2918.CrossRefGoogle Scholar
  19. 19.
    M. Shaarbaf and M.R. Toroghinejad: Mater. Sci. Engg. A, 2008, vol. 473, pp. 28–33.CrossRefGoogle Scholar
  20. 20.
    S. Roy, S. Singh, S. Suwas, S. Kumar, K. Chattopadhyay: Mater. Sci. Engg. A, 2011, vol. 528, pp. 8469-8478.CrossRefGoogle Scholar
  21. 21.
    Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature 2002, vol. 419, pp. 912-915.CrossRefGoogle Scholar
  22. 22.
    Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma, and Y. T. Zhu: Adv. Mater. 2006, vol. 18, pp. 2280–2283.CrossRefGoogle Scholar
  23. 23.
    E. Ma: Scripta Mater., 2003, vol. 49, pp. 663-668.CrossRefGoogle Scholar
  24. 24.
    N. Takata, S.-H. Lee, and N. Tsuji: Mater. Lett., 2009, vol. 63, pp. 1757–1760.CrossRefGoogle Scholar
  25. 25.
    J.-Y. Cho, K. Mirpuri, D.N. Lee, J.-K. An, and J.A. Szpunar: J. Elect. Mater. 2005,, Vol. 34, pp. 53-61.CrossRefGoogle Scholar
  26. 26.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford 2004.Google Scholar
  27. 27.
    D.P. Filed, D. Dornisch, and H.H. Tong: Scripta Mater., 2001, vol. 45, pp. 1069-1075.CrossRefGoogle Scholar
  28. 28.
    K.N. Tu : J. App. Phy., 2003, vol. 94, pp. 5451- 5473.CrossRefGoogle Scholar
  29. 29.
    K.S. Suresh, S. Sinha, A. Chaudhary, and S. Suwas: Mater. Char. 2012, vol. 70, pp. 74-82.CrossRefGoogle Scholar
  30. 30.
    K. Pawlik, J. Pospiech, and K. Lücke: Texture and Microstructures, 1991, vol. 25, pp. 14-18.Google Scholar
  31. 31.
    F. Kocks, H.-R. Wenk, and C.N. Tomé: Texture and anisotropy, Cambridge University Press, Cambridge, 1998, pp. 473-480.Google Scholar
  32. 32.
    C.N. Tomé and R.A. Lebensohn: Manual for visco plastic self consistent, version 7B, 2007.Google Scholar
  33. 33.
    V. Randle and O. Engler: Introduction to texture analysis, CRC Press, 2002.Google Scholar
  34. 34.
    J. Hirsch, E. Nes, and K. Lücke: Acta Metall., 1998, vol. 35, pp. 427438.Google Scholar
  35. 35.
    H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–3250.CrossRefGoogle Scholar
  36. 36.
    H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3251–3262.CrossRefGoogle Scholar
  37. 37.
    O. Dolland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1389-1411.CrossRefGoogle Scholar
  38. 38.
    T. Leffers and R.K. Ray: Prog. Mater. Sci., 2009, vol. 54, pp. 351-396.CrossRefGoogle Scholar
  39. 39.
    P. Rodriguez: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2697-2705.CrossRefGoogle Scholar
  40. 40.
    T. Narytani and J. Takamura: Acta Metall. Mater., 1991, vol. 227, pp. 2037-49.Google Scholar
  41. 41.
    N.P. Gurao and S. Suwas: App. Phy. Lett., 2004, vol. 94, 191902.CrossRefGoogle Scholar
  42. 42.
    O.V. Mishin, B. Bay, and D. Juul Jensen: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1653-1662.CrossRefGoogle Scholar
  43. 43.
    O. Engler, M.-Y. Huh, and C.N. Tome: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2299- 2315.CrossRefGoogle Scholar
  44. 44.
    W.C. Liu and J.G. Morris: Metall. Mater. Trans. A, 2005, Vol. 36A, pp. 1329-1338.CrossRefGoogle Scholar
  45. 45.
    C.I. Maurice, and J. H. Driver: Acta Mater., 1997, vol. 45, pp. 4627–4638.CrossRefGoogle Scholar
  46. 46.
    R. Lebehnson and T. Leffers: Texture and microstructures, 1999, vol. 31, pp. 217-230.CrossRefGoogle Scholar
  47. 47.
    M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett: Acta Mater., 2008, vol. 56, pp. 3098–3108.CrossRefGoogle Scholar
  48. 48.
    L. Delannay, O.V. Mishin, D. Juul Jensen, and P. Van Houtte: Acta Mater., 2001, vol. 49, pp. 2441–2451.CrossRefGoogle Scholar
  49. 49.
    D. Raabe, Z. Zhao, and F. Roters: Scripta Mater., 2004, vol. 50, pp.1085–1090.CrossRefGoogle Scholar
  50. 50.
    H. E. Vatne, R. Sahani and E. Nes: Acta Mater. 44 p 4447 (1996).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.High Temperature Materials UnitNational Institute for Materials ScienceTsukubaJapan
  3. 3.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations