Metallurgical and Materials Transactions A

, Volume 44, Issue 8, pp 3552–3563 | Cite as

Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

  • Nerea Isasti
  • Denis Jorge-Badiola
  • Mitra L. Taheri
  • Pello Uranga
Article

A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

References

  1. 1.
    S.G. Jansto: New Developments on Metallurgy and Applications of High Strength Steels Conf. Buenos Aires, 2008, TMS, Warrendale, PA, pp. 1313–26.Google Scholar
  2. 2.
    N.A. McPherson: Ironmaking and Steelmaking, 2009, vol. 36, pp. 193–200.CrossRefGoogle Scholar
  3. 3.
    E.J. Czyryca, D.P. Kihl, and R. DeNale: AMPTIAC Q., 2003, vol. 7, pp. 63–70.Google Scholar
  4. 4.
    D. Bhattacharya: 6th Int. Conf. on High Strength Low Alloy Steels, HSLA’2011, Beijing, China, 2011, CD-Rom.Google Scholar
  5. 5.
    C.I. Garcia, K. Cho, M. Hua and A.J. DeArdo: Mater. Sci. Forum, 2010, vols. 638-642, pp. 124-29.CrossRefGoogle Scholar
  6. 6.
    F.G. Caballero and C. García-Mateo: Phase Transformations in Steels, E. Pereloma and D.V. Edmonds, eds., Woodhead Publishing, Philadelphia, PA, 2002, vol. 2, pp. 271–94.Google Scholar
  7. 7.
    C.I. Garcia: Int. Conf. Microalloying ‘95, ISS, Warrendale, PA, 1995, pp. 365–75.Google Scholar
  8. 8.
    G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937–45.CrossRefGoogle Scholar
  9. 9.
    H. Mohrbacher: International Seminar on Applications of Mo in steels, Beijing, China, 2010, pp. 75–96.Google Scholar
  10. 10.
    M.G. Akben, I. Weiss, and J.J. Jonas: Acta Metall., 1981, vol. 29, pp. 111–21.CrossRefGoogle Scholar
  11. 11.
    O. Kwon and A.J. DeArdo: Acta Metall. Mater., 1991, vol. 39, pp. 529–38.CrossRefGoogle Scholar
  12. 12.
    X. Sun and Q. Yong: International Seminar on Applications of Mo in steels, Beijing, China, 2010, pp. 61–74.Google Scholar
  13. 13.
    B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.Google Scholar
  14. 14.
    T. Araki, I. Kozasu, H. Tankechi, K. Shibata, M. Enomoto, and H. Tamehiro, eds., Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, vol. 1.Google Scholar
  15. 15.
    H.I. Aaronson and H.A. Domian: Trans. AIME, 1966, vol. 236, pp. 781–96.Google Scholar
  16. 16.
    M. Hillert: Solid–Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS, Warrendale, PA, 1982, pp. 789–806.Google Scholar
  17. 17.
    D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 2313–25.CrossRefGoogle Scholar
  18. 18.
    T.B. Massalski: Phase Transformations, ASM, Metals Park, OH, 1970, pp. 433–95.Google Scholar
  19. 19.
    M. Hillert: Metall. Trans. A, 1984, vol. 15A, pp. 411–19.Google Scholar
  20. 20.
    H.J. Lee, G. Spanos, G.J. Shiflet, and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 1129–40.CrossRefGoogle Scholar
  21. 21.
    H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21A, pp. 767-97.Google Scholar
  22. 22.
    J. Cawley, C.F. Harris, and E.A. Wilson: New Aspects of Microstructures in Modern Low Carbon High Strength Steels Symp., ISIJ, Tokyo, 1994, pp. 11–14.Google Scholar
  23. 23.
    K. Shibata and K. Asakura: New Aspects of Microstructures in Modern Low Carbon High Strength Steels Symp., ISIJ, Tokyo, 1994, pp. 31–34.Google Scholar
  24. 24.
    H.K.D.H. Bhadeshia: Bainite in Steels, Transformations, Microstructure and Properties, 2nd ed., The Institute of Materials, London, 2001, pp. 277–79.Google Scholar
  25. 25.
    S. Zajac, V. Schwinn, and K.H. Tacke: Mater. Sci. Forum, 2005, vols. 500–501, pp. 387–94.CrossRefGoogle Scholar
  26. 26.
    N. Takayama, G. Miyamoto, N. Kamikawa, H. Nako, T. Maki, and T. Furuhara: Mater. Sci. Forum, 2010, vols. 638–642, pp. 3080–85.CrossRefGoogle Scholar
  27. 27.
    P.A. Manohar, T.R. Chandra, and C.R. Killmore: ISIJ Int. 1996, vol. 36, pp. 1486–93.CrossRefGoogle Scholar
  28. 28.
    N. Isasti, D. Jorge-Badiola, M.L. Taheri, B. López and P. Uranga: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3729-42.CrossRefGoogle Scholar
  29. 29.
    W.-B. Lee, S.-G. Hong, C.-G. Park, and S.-H. Park: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1689–98.CrossRefGoogle Scholar
  30. 30.
    T. Hanamura, F. Yin, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610–17.CrossRefGoogle Scholar
  31. 31.
    C. Garcia de Andres, F.G. Caballero, C. Capdevila, and L.F. Alvarez: Mater. Charact., 2002, vol. 48, pp. 101-11.CrossRefGoogle Scholar
  32. 32.
    R. Petrov, L. Kestens, and Y. Houbaert: Mater. Charact., 2004, vol. 53, pp. 51–61.CrossRefGoogle Scholar
  33. 33.
    ABAQUS Reference Manuals: Dassault Systèmes, Providence, RI, 2009.Google Scholar
  34. 34.
    ISO 13067:2011(E), Microbeam analysis—Electron backscatter diffraction—Measurement of average grain size, p. 7.Google Scholar
  35. 35.
    A. Iza-Mendia, and I. Gutiérrez: Mater. Sci. Eng. A, 2013, vol. A561, pp. 40–51.Google Scholar
  36. 36.
    G.I. Rees, J. Perdrix, T. Maurickx, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. A194, pp. 179-86.CrossRefGoogle Scholar
  37. 37.
    R.T. De Hoff and F. N. Rhines: Quantitative Metallography, McGraw-Hill Book Co., New York, 1968.Google Scholar
  38. 38.
    D.N. Hanlon, J. Sietsma, and S. van der Zwaag: ISIJ Int, 2001, vol. 41, pp. 1028–36.CrossRefGoogle Scholar
  39. 39.
    Y. van Leeuwen and J. Sietsma: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4572–77.CrossRefGoogle Scholar
  40. 40.
    R. Bengochea, B. López, and I. Gutiérrez: Mater. Sci. Forum, 1998, vols. 284–286, pp. 201–08.CrossRefGoogle Scholar
  41. 41.
    C. Calvo, I.-H. Jung, A.M. Elwazri, D. Bai, and S. Yue: Mater. Sci. Eng. A, 2009, vol. 520, pp. 90–96.CrossRefGoogle Scholar
  42. 42.
    J.L. Lanzagorta, D. Jorge-Badiola, and I. Gutierrez: Mater. Sci. Eng. A, 2010, vol. 527, pp. 934–40.CrossRefGoogle Scholar
  43. 43.
    R.Y. Zhang and J.D. Boyd: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1448-59.CrossRefGoogle Scholar
  44. 44.
    M. Militzer, E.B. Hawbolt, and T.R. Meadowcroft, Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1247–59.CrossRefGoogle Scholar
  45. 45.
    A.K. Lis and J. Lis: Mater. Sci. Forum, 2007, vol. 539-543, pp. 4620-4625.CrossRefGoogle Scholar
  46. 46.
    M. Olasolo, P. Uranga, J.M. Rodriguez-Ibabe, and B. Lopez: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2559-69.CrossRefGoogle Scholar
  47. 47.
    B. Pereda, J. M. Rodriguez-Ibabe and B. López: ISIJ Int., 2008, vol. 48, pp. 1457–1466.CrossRefGoogle Scholar
  48. 48.
    P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle, and P.D.Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1331–49.CrossRefGoogle Scholar
  49. 49.
    S. Zaefferer, P. Romano, and F. Friedel: J. Microscopy, 2008, Vol. 230, pp. 499–508.CrossRefGoogle Scholar
  50. 50.
    E.P. Kwon, S. Fujieda, K. Shinoda, and S. Suzuki: Mat. Sci. and Eng. A, 2011, vol. 528, pp. 5007–17.CrossRefGoogle Scholar
  51. 51.
    F. Gerdemann, M. Fischer, W. Bleck, and J.G. Speer: New Developments on Metallurgy and Applications of High Strength Steels Conf., Buenos Aires, 2008, TMS, Warrendale, PA, pp. 93–103.Google Scholar
  52. 52.
    A.W. Wilson and G. Spanos: Mater. Charact., 2001, vol. 46, pp. 407–18.CrossRefGoogle Scholar
  53. 53.
    H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–1288.CrossRefGoogle Scholar
  54. 54.
    W. Wang, W. Yan, L. Zhu, P. Hu, Y. Shan, and K. Yang: Mater. Design, 2009, vol. 30, pp. 3436–43.CrossRefGoogle Scholar
  55. 55.
    M.J. Merwin, C.T. Becker, and D.R. Giansante: Materials Science and Technology 2009 Conference, 2009, Pittsburgh, PA, pp. 956–68.Google Scholar
  56. 56.
    A. From and R. Sandström: Mater. Charact., 1999, vol. 42, pp. 111–22.CrossRefGoogle Scholar
  57. 57.
    I. Tamura: Int. Conf. Thermec ‘88, ISIJ, Tokyo, 1988, pp. 1–10.Google Scholar
  58. 58.
    T. Tanaka: Int. Conf. Microalloying 95, M. Korchynsky, A.J. DeArdo, P. Repas, and G. Tither, eds., Pittsburgh, ISS, Warrendale, PA, 1995, pp. 165–81.Google Scholar
  59. 59.
    R. Bengochea, B. Lopez, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 417–26.CrossRefGoogle Scholar
  60. 60.
    T. Furuhara, N. Takayama, and G. Miyamoto: Mater. Sci. Forum, 2010, vols. 638-642, pp. 3044-49.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Nerea Isasti
    • 1
  • Denis Jorge-Badiola
    • 1
  • Mitra L. Taheri
    • 2
  • Pello Uranga
    • 1
  1. 1.CEIT and TECNUN, University of NavarraDonostia-San SebastiánSpain
  2. 2.Drexel UniversityPhiladelphiaUSA

Personalised recommendations