Metallurgical and Materials Transactions A

, Volume 44, Issue 8, pp 3882–3889 | Cite as

Defects in Carbon-Rich Ferrite of Cold-Drawn Pearlitic Steel Wires

  • Y. Z. ChenEmail author
  • G. Csiszár
  • J. Cizek
  • S. Westerkamp
  • C. Borchers
  • T. Ungár
  • S. Goto
  • F. Liu
  • R. Kirchheim


By means of X-ray line profile analysis and positron lifetime spectroscopy, densities of deformation-induced defects in carbon-rich ferrite of a series of cold-drawn pearlitic steel wires with true strains (ε) up to 5 are characterized. It is shown that both the dislocation densities and the vacancy cluster concentrations increase continuously with increasing ε. On the basis of the measured defect densities, values of defect hardening are estimated. The result shows that contributions of the defect hardening to the total tensile strength of the wires reach nearly 40 pct, which is mainly ascribed to the dislocation hardening. Chemical surroundings of the defects in the carbon-rich ferrite are investigated by coincidence Doppler broadening spectroscopy. The association of carbon with the defects in ferrite is demonstrated.


Ferrite Cementite Positron Lifetime Vacancy Cluster Atom Probe Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial supports from the Deutsche Forschungsgemeinschaft (SFB 602 TP B13 and KI 230/34), the Alexander von Humboldt Stiftung, the Czech Science agency (project P108/12/G043), and thank Prof. D. Raabe, Dr. Y.J. Li, and Dr. P. Choi for fruitful discussions, as well as Dr. S. Nishida from Nippon Steel Company for providing the wire specimens. Y.Z.C. appreciates the supports from the Natural Science Foundation of China (Nos. 51101121 and 51125002), the Research Fund of the State Key Lab. of Solidification Processing (NWPU) (No. 79-TP-2011), and the Fundamental Research Fund of NWPU (No. JC2001134). G.Cs. and T.U. are grateful to the Hungarian National Science Foundation (OTKA #71594, #67692 and #80772) for the supports provided for the x-ray peak profile analysis.


  1. 1.
    T. Takahashi, I. Ochiai, H. Tashiro, S. Ohashi, S. Nishida, T. Tarui: Nippon Steel Technical Report, 1995, no. 64, pp. 45-49.Google Scholar
  2. 2.
    J.D. Embury, R.M. Fisher: Acta Metall., 1966, vol. 14, pp. 147-59.CrossRefGoogle Scholar
  3. 3.
    G. Langford: Metall. Trans. A, 1977, vol. 8, pp. 861-75.Google Scholar
  4. 4.
    H Tashiro and T. Tarui: Nippon Steel Tech. Rep., 2003, vol. 88, pp. 87–91.Google Scholar
  5. 5.
    V.G. Gavriljuk, V.G. Prokopenko, O.N. Razumov: Phys. Stat. Sol. (a), 1979, vol. 53, pp. 147-54.CrossRefGoogle Scholar
  6. 6.
    J. Languillaume, G. Kapelski, B. Baudelet: Acta Mater., 1997, vol. 45, pp. 1201-12.CrossRefGoogle Scholar
  7. 7.
    S. Goto, R. Kirchheim, T. Al-Kassab, C. Borchers: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 1129-38.CrossRefGoogle Scholar
  8. 8.
    C. Borchers, T. Al-Kassab, S. Goto, R. Kirchheim: Mater. Sci. Eng. A, 2009, vol. 502, pp. 131-38.CrossRefGoogle Scholar
  9. 9.
    M.H. Hong, W.T. Reynolds Jr, T. Tarui, K. Hono: Metall. Mater. Trans. A, 1999, vol. 30, pp. 717-27.Google Scholar
  10. 10.
    M. Zelin: Acta Mater., 2002, vol. 50, pp. 4431-47.CrossRefGoogle Scholar
  11. 11.
    X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki, K. Hono: Scripta Mater., 2009, vol. 60, pp. 1056-61.CrossRefGoogle Scholar
  12. 12.
    K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, T. Takahashi: Scripta Mater., 2001, vol. 44, pp. 977-83.CrossRefGoogle Scholar
  13. 13.
    Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, R. Kirchheim: Acta Mater., 2011, vol. 59, pp. 3965-77.CrossRefGoogle Scholar
  14. 14.
    Y.Z. Chen, G. Csiszár, J. Cizek, C. Borchers, T. Ungár, S. Goto, R. Kirchheim: Scripta Mater., 2011, vol. 64, pp. 390-93.CrossRefGoogle Scholar
  15. 15.
    A. Taniyama, T. Takayama, M. Arai, T. Hamada: Scripta Mater., 2004, vol. 51, pp. 53-58.CrossRefGoogle Scholar
  16. 16.
    R.W. Cahn and P. Haasen: Physical Metallurgy, fourth, revised and enhanced ed., Elsevier, Amsterdam, 1996, pp. 1589–94, 1642–43, 1623–25, 1921–23, 2016–22, and 2043–50.Google Scholar
  17. 17.
    J. Wilde, A. Cerezo, G.D.W. Smith: Scripta Mater., 2000, vol. 43, pp. 39-48.CrossRefGoogle Scholar
  18. 18.
    X. Sauvage, X. Quelennec, J.J. Malandain, P. Pareige : Scripta Mater., 2006, vol. 54, pp. 1099-1103.CrossRefGoogle Scholar
  19. 19.
    T. Ungár, M.G. Glavicic, L. Balogh, K. Nyilas, A.A. Salem, G. Ribárik, S.L. Semiatin: Mater. Sci. Eng. A, 2008, vol. 493, pp. 79-85.CrossRefGoogle Scholar
  20. 20.
    F. Becvar, J. Cizek, I. Prochazka: Appl. Surf. Sci., 2008, vol. 255, pp. 111-14.CrossRefGoogle Scholar
  21. 21.
    I. Prochazka, I. Novotny, F. Becvar: Mater. Sci. Forum, 1997, vol. 255-257, pp. 772-74.CrossRefGoogle Scholar
  22. 22.
    J. Cizek, M. Vlcek, and I. Prochazka: Nuclear Instrum. Methods Phys. Res. Sect., 2010, vol. A 623, pp. 982–94.Google Scholar
  23. 23.
    A. Revesz, T. Ungár, A. Borbély, J. Lendvai: Nanostructured Materials, 1996, vol. 7, pp. 779-788.CrossRefGoogle Scholar
  24. 24.
    T. Ungár, A. Borbély: Appl. Phys. Lett., 1996, vol. 69(21), pp. 3173-75.CrossRefGoogle Scholar
  25. 25.
    T. Ungár, G. Tichy: Phys Phys. Stat. Sol. (a), 1999, vol. 171, pp. 425-34.CrossRefGoogle Scholar
  26. 26.
    L. Balogh, G. Ribárik, T. Ungár: J. Appl. Phys., 2006, vol. 100, pp. 0235121-10.CrossRefGoogle Scholar
  27. 27.
    G. Ribárik, J. Gubicza, T. Ungár: Mater. Sci. Eng., 2004, vol. A387-389, pp. 343-47.Google Scholar
  28. 28.
  29. 29.
    S. Takaki, T. Tsuchiyama, K. Nakashima, H. Hidaka, K. Kawasaki, Y. Futamura: Metals and Mateirals International, 2004, vol. 10, pp. 533-39.CrossRefGoogle Scholar
  30. 30.
    X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu: Acta Mater., 2011, vol. 59, pp. 3422-30.CrossRefGoogle Scholar
  31. 31.
    T. Ungár, I. Dragomir, A. Révész, A. Borbély: J. Appl. Crystallogr., 1999, vol. 32, pp. 992-1002.CrossRefGoogle Scholar
  32. 32.
    T. Ungár, J. Gubicza, A. Borbély, G. Ribárik: J. Appl. Crystallogr., 2001, vol. 34, pp. 298-310.CrossRefGoogle Scholar
  33. 33.
    M.J. Puska, R.M. Nieminen: J. Phys. F: Met. Phys., 1983, vol. 13, pp. 333-46.CrossRefGoogle Scholar
  34. 34.
    A. Hempel, M. Hasegawa, G. Brauer, F. Plazaola, M. Saneyasu, and Z. Tang: Proceedings of the Ninth International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, August 1–5, 1999, Newport Beach, CA, S. Bruemmer, P. Ford, G. Was, eds., The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 1999.Google Scholar
  35. 35.
    R.N. Wes: Positrons in Solids, Hautojärvi P, ed., Springer, Berlin, 1979Google Scholar
  36. 36.
    A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, P. Moser: Phys. Rev. B, 1982, vol. 25(2), pp. 762-80.CrossRefGoogle Scholar
  37. 37.
    R.M. Nieminen, J Laakonen: Appl. Phys. 1979, vol. 20, pp. 181-84.CrossRefGoogle Scholar
  38. 38.
    T.M. Hall, A.N. Goland, C.L. Snead Jr: Phys. Rev. B, 1974, vol.10, pp. 3062-74.CrossRefGoogle Scholar
  39. 39.
    T.M. Hall, A.N. Goland, K.C. Jain, R.W. Siegel: Phys. Rev. B, 1975, vol. 12, pp. 1613-19.CrossRefGoogle Scholar
  40. 40.
    E. Gramsch, K.G. Lynn: Phys. Rev. B, 1989, vol. 40, pp. 2537-40.CrossRefGoogle Scholar
  41. 41.
    J.A. Jackman, G.M. Hood, R.J. Schultz: J. Phys. F, 1987, vol. 9, pp. 1817-31.CrossRefGoogle Scholar
  42. 42.
    J.-E. Kluin, Th. Hehenkamp: Phys. Rev. B, 1991, vol. 44, pp. 11597-11608.CrossRefGoogle Scholar
  43. 43.
    J. Wolff: Mater. Sci. Forum, 1992, vol. 105-110, pp. 1329-32.CrossRefGoogle Scholar
  44. 44.
    Y. Tomota, P. Lukas, D. Neov, S. Harjo, Y.R. Abe: Acta Mater., 2003, vol. 51, pp. 805-17.CrossRefGoogle Scholar
  45. 45.
    P. Haasen: Physical Metallurgy, 3rd ed., Cambridge University Press, Cambridge, 1996, pp. 358-62.Google Scholar
  46. 46.
    N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801-06.CrossRefGoogle Scholar
  47. 47.
    M. Zehetbauer: Key Eng. Mater., 1994, vol. 97-98, pp. 287-306.CrossRefGoogle Scholar
  48. 48.
    S.J. Zinkle, L.E. Seitzman, W.G. Wolfers: Phil. Mag. A, 1987, vol. 55, pp. 111-25.CrossRefGoogle Scholar
  49. 49.
    A. Somoza, M.P. Petkov, K.G. Lynn, and A. Dupasquier: Phys. Rev. B, 2002, vol. 65, pp. 094107-1–6.Google Scholar
  50. 50.
    A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, and T. Ungár: J. Appl. Crystallogr., 2003, vol. 36, pp. 160–162. Link to ANIZC program:

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Y. Z. Chen
    • 1
    • 2
    Email author
  • G. Csiszár
    • 3
  • J. Cizek
    • 4
  • S. Westerkamp
    • 2
  • C. Borchers
    • 2
  • T. Ungár
    • 3
  • S. Goto
    • 5
  • F. Liu
    • 1
  • R. Kirchheim
    • 2
    • 6
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Institut für MaterialphysikUniversität GöttingenGöttingenGermany
  3. 3.Department of Materials PhysicsEötvös UniversityBudapestHungary
  4. 4.Department of Low-Temperature PhysicsCharles University in PraguePraha 8Czech Republic
  5. 5.Department of Materials Science and EngineeringAkita UniversityAkitaJapan
  6. 6.International Institute for Carbon–Neutral Energy Research (WPI-I2CNER)Kyuchu University FukuokaJapan

Personalised recommendations