Metallurgical and Materials Transactions A

, Volume 44, Issue 8, pp 3511–3523 | Cite as

Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels

  • Jingwei Zhao
  • Taekyung Lee
  • Jeong Hun Lee
  • Zhengyi Jiang
  • Chong Soo Lee


In the current study, the effects of tungsten (W) addition on the microstructure, hardness, and room/low [223 K and 173 K (−50 °C and −100 °C)] temperature tensile properties of microalloyed forging steels were systematically investigated. Four kinds of steel specimens were produced by varying the W additions (0, 0.1, 0.5, and 1 wt pct). The microstructure showed that the addition of W does not have any noticeable effect on the amount of precipitates. The precipitates in W-containing steels were all rich in W, and the W concentration in the precipitates increased with the increasing W content. The mean sizes of both austenite grains and precipitates decreased with the increasing W content. When the W content was equal to or less than 0.5 pct, the addition of W favored the formation of allotriomorphic ferrite, which subsequently promoted the development of acicular ferrite in the microalloyed forging steels. The results of mechanical tests indicated that W plays an important role in increasing the hardness and tensile strength. When the testing temperature was decreased, the tensile strength showed an increasing trend. Both the yield strength and the ultimate tensile strength obeyed an Arrhenius type of relation with respect to temperature. When the temperature was decreased from 223 K to 173 K (from −50 °C to −100 °C), a ductile-to-brittle transition (DBT) of the specimen with 1 pct W occurred. The addition of W favored a higher DBT temperature. From the microstructural and mechanical test results, it is demonstrated that the addition of 0.5 pct W results in the best combination of excellent room/low-temperature tensile strength and ductility.


Ferrite Austenite Bainite Nonmetallic Inclusion Prior Austenite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by the Ministry of Knowledge and Economy, Korea under the program (2009-D-2-A-Y0-B-07) of the Leading Industry Development for Dongnam Economic Region. The authors would like to thank Dr. Tania Silver from the University of Wollongong for assisting in the English editing.


  1. 1.
    R.M.K. Honeycombe and H.K.D.H. Bhadeshia: Steels, Microstructure and Properties, 2nd ed., Arnold, London, 1995, p. 189.Google Scholar
  2. 2.
    D. Whittaker: Metall., 1979, vol. 46, pp. 275-81.Google Scholar
  3. 3.
    M. Jahazi and B. Eghbali: J. Mater. Process. Technol., 2001, vol. 113, pp. 594-98.CrossRefGoogle Scholar
  4. 4.
    G. Krauss: Steels: Processing, Structure, and Performance, ASM International, Ohio, 2005, pp. 230-32.Google Scholar
  5. 5.
    J. Zhao, J.H. Lee, Y.W. Kim, Z. Jiang, and C.S. Lee: Mater. Sci. Eng. A, 2013, vol. 559, pp. 427-35.CrossRefGoogle Scholar
  6. 6.
    S. Roy, S. Patra, S. Neogy, A. Laik, S.K. Choudhary, and D. Chakrabarti: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1845-60.CrossRefGoogle Scholar
  7. 7.
    J.G. Jung, J.S. Park, J. Kim, and Y.K. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5529-35.CrossRefGoogle Scholar
  8. 8.
    S. Vervynckt, P. Thibaux, and K. Verbeken: Met. Mater. Int., 2012, vol. 18, pp. 37-46.CrossRefGoogle Scholar
  9. 9.
    S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S. Jansto: Mater. Sci. Eng. A, 2007, vol. 460-461, pp. 335-43.Google Scholar
  10. 10.
    Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1731-42.CrossRefGoogle Scholar
  11. 11.
    G. Huang and K.M. Wu: Met. Mater. Int., 2011, vol. 17, pp. 847-52.CrossRefGoogle Scholar
  12. 12.
    C.P. Reip, S. Shanmugam, and R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424, pp. 307-17.CrossRefGoogle Scholar
  13. 13.
    B.K. Show, R. Veerababu, R. Balamuralikrishnan, and G. Malakondaiah: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1595-604.CrossRefGoogle Scholar
  14. 14.
    S. Sankaran, Gouthama, S. Sangal, and K.A. Padmanabhan: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3259–73.Google Scholar
  15. 15.
    D. Rasouli, Sh. Khameneh Asl, A. Akbarzadeh, and G.H. Daneshi: J. Mater. Process. Technol., 2008, vol. 206, pp. 92–98.Google Scholar
  16. 16.
    C. Capdevila, F.G. Caballero, and C. García de Andrés: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 661–69.Google Scholar
  17. 17.
    C. Caminaga, W.J. Botta Filho, M.L.N. Silva, and S.T. Button: Procedia Eng., 2011, vol. 10, pp. 512–17.Google Scholar
  18. 18.
    M.A. Suarez, M.A. Alvarez-Pérez, O. Alvarez-Fregoso, and J.A. Juarez-Islas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4924-26.CrossRefGoogle Scholar
  19. 19.
    R.L. Klueh, D.J. Alexander, and P.J. Maziasz: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 335-345.CrossRefGoogle Scholar
  20. 20.
    J.I. Suk, C.N. Park, S.H. Hong, and Y.G. Kim: Mater. Sci. Eng. A, 1991, vol. 138, pp. 367–73.Google Scholar
  21. 21.
    T. Narita, S. Ukai, S. Ohtsuka, M. Inoue: J. Nucl. Mater., 2011, vol. 417, pp. 158-61.CrossRefGoogle Scholar
  22. 22.
    N.H. Heo and H.C. Lee: Scripta Metall. Mater., 1995, vol. 33, pp. 2031-35.CrossRefGoogle Scholar
  23. 23.
    J.S. Park, S.J. Kim, and C.S. Lee: Mater. Sci. Eng. A, 2001, vol. 298, pp. 127-36.CrossRefGoogle Scholar
  24. 24.
    S.G. Hong, W.B. Lee, and C.G. Park: J. Nucl. Mater., 2001, vol. 288, pp. 202-207.CrossRefGoogle Scholar
  25. 25.
    S.B. Kim, K.W. Paik, and Y.G. Kim: Mater. Sci. Eng. A, 1998, vol. 247, pp. 67-74.CrossRefGoogle Scholar
  26. 26.
    W.J. Nam, C.S. Lee, and D.Y. Ban: Scr. Mater., 1997, vol. 36, pp. 1315-20.CrossRefGoogle Scholar
  27. 27.
    J.R. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1989, vol. 5, pp. 93-7.Google Scholar
  28. 28.
    I. Madariaga, I. Gutierrez, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2187-97.CrossRefGoogle Scholar
  29. 29.
    K. Inoue, N. Ishikawa, and K. Ishida: ISIJ Int., 2001, vol. 41, pp. 175-82.CrossRefGoogle Scholar
  30. 30.
    R.M. Poths, R.L. Higginson, and E.J. Palmiere: Scripta Mater., 2011, vol. 44, pp. 147-51.Google Scholar
  31. 31.
    R.W. Gurry, J. Christakos, and C.D. Stricker: Trans. ASM, 1958, vol. 50, pp. 105-28.Google Scholar
  32. 32.
    J. Zhao, Z. Jiang, J.S. Kim, and C.S. Lee: Mater. Des., 2013, vol. 49, pp. 252-58.CrossRefGoogle Scholar
  33. 33.
    J. Zhao, Z. Jiang, and C.S. Lee: Mater. Des., 2013, vol. 47, pp. 227-33.CrossRefGoogle Scholar
  34. 34.
    O. Grong and D.K. Matlock: Int. Met. Rev., 1986, vol. 31, pp. 27-48.CrossRefGoogle Scholar
  35. 35.
    D.J. Abson and R.J. Pargeter: Int. Met. Rev., 1986, vol. 31, pp. 141-94.CrossRefGoogle Scholar
  36. 36.
    Y. Ito and M. Nakanishi: Sumitomo Search, 1976, vol. 15, pp. 42-62.Google Scholar
  37. 37.
    R.A. Ricks, P.R. Howell, and G.S. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732-40.CrossRefGoogle Scholar
  38. 38.
    J.R. Yang and H.K.D.H. Bhadeshia: in Advances in Welding Science and Technology, S.A. David, ed., ASM, Metals Park, OH, 1987, pp. 187–91.Google Scholar
  39. 39.
    H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., The University Press, Cambridge, London, 2001, p. 239.Google Scholar
  40. 40.
    H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, 3rd ed., Elsevier Butterworth-Heinemann, Oxford, 2006, p. 291.Google Scholar
  41. 41.
    G. Snieder and H.W. Kerr: Can. Metall. Quart., 1984, vol. 23, pp. 315-25.CrossRefGoogle Scholar
  42. 42.
    S.S. Babu and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1990, vol. 6, pp. 1005-20.CrossRefGoogle Scholar
  43. 43.
    M. Strangwood and H.K.D.H. Bhadeshia: in Advances in Welding Science and Technology, S.A. David, ed., ASM, Metals Park, OH, 1987, pp. 209–13.Google Scholar
  44. 44.
    G.M. Smith: Ph.D. Thesis, University of Cambridge, 1984.Google Scholar
  45. 45.
    M.K. Graf, H.G. Hillenbrand, and P.A. Peters: Accelerated Cooling of Steel, P.D. Southwick, ed., TMS-AIME, Warrendale, 1985, pp. 349–66.Google Scholar
  46. 46.
    W.A. Spitzig and A.S. Keh: Acta Metall., 1970, vol. 18, pp. 1021-33.CrossRefGoogle Scholar
  47. 47.
    M.R. Krishnadev and R. Ghosh: Metall. Trans. A, 1979, vol. 10A, pp. 1941-44.Google Scholar
  48. 48.
    S. Naamane, G. Monnet, and B. Devincre: Int. J. Plast., 2010, vol. 26, pp. 84-92.CrossRefGoogle Scholar
  49. 49.
    W.A. Spitzig and A.S. Keh: Metall. Trans., 1970, vol. 1, pp. 3325-31.Google Scholar
  50. 50.
    C. Keller, M.M. Margulies, Z. Hadjem-Hamouche, and I. Guillot: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6758-64.CrossRefGoogle Scholar
  51. 51.
    S. Vaynman, M.E. Fine, S. Lee, and H.D. Espinosa: Scr. Mater., 2006, vol. 55, pp. 351-4.CrossRefGoogle Scholar
  52. 52.
    P. Spätig, G.R. Odette, and G.E. Lucas: J. Nucl. Mater., 1999, vol. 275, pp. 324-31.CrossRefGoogle Scholar
  53. 53.
    B.A. Hands and H.M. Rosenberg: Acta Metall., 1969, vol. 17, pp. 455-61.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Jingwei Zhao
    • 1
  • Taekyung Lee
    • 2
  • Jeong Hun Lee
    • 2
  • Zhengyi Jiang
    • 1
  • Chong Soo Lee
    • 2
  1. 1.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongNSWAustralia
  2. 2.Department of Materials Science and Engineering and the Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations