Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 7, pp 3167–3175 | Cite as

Material Flow during Friction Stir Welding of HSLA 65 Steel

  • John YoungEmail author
  • David Field
  • Tracy Nelson
Article

Abstract

Material flow during friction stir welding of HSLA-65 steel was investigated by crystallographic texture analysis. During the welding process, the steel deforms primarily by local shear deformation in the austenite phase and then transforms upon cooling. Texture data from three weld specimens were compared to theoretical textures calculated using ideal Euler angles for shear in face centered cubic (FCC) structures transformed by the Kurdjumov–Sacks (KS) relationship. These theoretical textures show similarities to the experimental textures. Texture data from the weld specimens revealed a rotation of the shear direction corresponding to the tangent of the weld tool on both the area directly under the weld tool shoulder and weld cross sections. In addition, texture data showed that while the shear plane of the area under the weld tool shoulder remained constant, the shear plane of the weld cross sections is influenced by the weld tool pin.

Keywords

Friction Stir Welding Shear Plane Friction Stir Welding Face Centered Cubic Weld Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    The Welding Institute (TWI), W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes: PCT World Patent Application WO 93/10935. Filed: Nov.27, 1992 (U.K. 9125978.8, Dec. 6, 1991). Publ: June 10, 1993.Google Scholar
  2. 2.
    TWI; W.M. Thomas, E.D. Nicholas, J.C. Needham, P. Temple-Smith, W.K.W. Kallee S, and C.J. Dawes: U.K. Patent Application 2,306,366A. Filed: Oct, 17, 1996. Publ: May 7, 1993.Google Scholar
  3. 3.
    Cam, G. (2011). Friction stir welded structural materials: beyond al-alloys. International Materials Reviews, 56(1), 1-48.CrossRefGoogle Scholar
  4. 4.
    Field, D. P., and T. W. Nelson. Metall. Mater. Trans. A. (2001): 2869.CrossRefGoogle Scholar
  5. 5.
    Root, J. M., D.P. Field, and T.W. Nelson. Metall. Mater. Trans. A. (2009): 2109-14 CrossRefGoogle Scholar
  6. 6.
    Rhodes, C.G., M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton. ScriPta Materialia. 36.1 (1997): 69-75.CrossRefGoogle Scholar
  7. 7.
    Xu, S., and X. Deng. Acta Ma. 56. (2008): 1326-1341.CrossRefGoogle Scholar
  8. 8.
    Xie, G.M., Z.Y. Ma, and L. Geng. MetTrans. 486. (2008): 49-55.CrossRefGoogle Scholar
  9. 9.
    Mironov, S., Y.S. Sato, and H. Kokawa. Mat. Sci. and Eng. A 527. (2010): 7498-504.CrossRefGoogle Scholar
  10. 10.
    Suhuddin, U. F. H. R., S. Mironov, Y.S. Sato, H. Kokawa, and Lee C. W. Acta Ma. 57.18 (2009): 5406-18 .CrossRefGoogle Scholar
  11. 11.
    Fonda, R.W., J.F. Bingert, and K.J Colligan. Scripta Mater. 51. (2004): 243-48.CrossRefGoogle Scholar
  12. 12.
    Fonda, R.W., and J.F. Bingert. Scripta Mater. 57. (2007): 1052-55.CrossRefGoogle Scholar
  13. 13.
    Mahoney, M. W., T.W. Nelson, C. D. Sorenson, and S. M. Packer. Mater. Sci. Forum. 638. (2010): 41-46.CrossRefGoogle Scholar
  14. 14.
    T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke: Weld. J., 2003, vol. 82, pp. 1S–9S.Google Scholar
  15. 15.
    Ghosh, M., K. Kumar, and R.S. Mishra. Scripta Mater.. 63. (2010): 851-54.CrossRefGoogle Scholar
  16. 16.
    Cho, H. H., Kang, S. H., Kim, S. H., Oh, K. H., Kim, H. J., Chang, W. S., & Han, H. N. (2012). Microstructural evolution in friction stir welding of high-strength linepipe steel. Materials and Design, 34, 258-67.CrossRefGoogle Scholar
  17. 17.
    Mironov, S., Y.S. Sato, H. Kokawa, H. Inoue, and S. Tsuge. Acta Mat. (2011): 1-10CrossRefGoogle Scholar
  18. 18.
    T. Saeid, Abdollah-zadeh, A., Shibayanagi, T., Ikeuchi, K., & Assadi, H. (2010). On the formation of grain structure during friction stir welding of duplex stainless steel. Materials Science and Engineering A, 527, 6484-88.CrossRefGoogle Scholar
  19. 19.
    Cho, J. H., Boyce, D. E., & Dawson, P. R. (2005). Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Materials Science and Engineering A, 298, 146-163.Google Scholar
  20. 20.
    A.K. Sinha: Physical Metallurgy Handbook, McGraw-Hill, New York, 2003, pp. 81–89.Google Scholar
  21. 21.
    Canova, G.R., Kocks, U.F., & Jonas, J.J. (1984). Theory of torsion texture development. Acta metall, 32(2), 211-26.CrossRefGoogle Scholar
  22. 22.
    D.A. Porter and Easterling K.E.: Phase Transformation in Metals and Alloys, 1st ed., VanNostrand Reinhold, Workingham, England, 1981, p. 148.Google Scholar
  23. 23.
    Godet, S, J.C. Glez, Y. He, J.J. Jonas, and P.J. Jacques. J. of App. Crys. 37. (2004): 417-25.CrossRefGoogle Scholar
  24. 24.
    Gardiola, B., C. Esling, M. Humbert, and K. E. Hensger. Adv. Eng. Mat. 5.8 (2003): 583-87.CrossRefGoogle Scholar
  25. 25.
    Chapellier, Ph., R. K. Ray, and J. J. Jonas. Acta Metal. et Mat. 38.8 (1990): 1475-90.CrossRefGoogle Scholar
  26. 26.
    Beladi, H., Cizek, P., & Hodgson, P. D. (2010). On the characteristics of substructure development through dynamic recrystallization. Acta Materialia, 58, 3531-41.CrossRefGoogle Scholar
  27. 27.
    Metals Handbook: Atlas of Microstructures of Industrial Alloys, 8th ed., vol. 7, American Society for Metals, Metals Park, Ohio, 1972.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.School of Mechanical EngineeringBrigham Young UniversiyProvoUSA

Personalised recommendations