Metallurgical and Materials Transactions A

, Volume 44, Issue 6, pp 2778–2798 | Cite as

Plastic Flow and Microstructure Evolution during Thermomechanical Processing of a PM Nickel-Base Superalloy

  • S. L. Semiatin
  • K. E. McClary
  • A. D. Rollett
  • C. G. Roberts
  • E. J. Payton
  • F. Zhang
  • T. P. Gabb
Article

Abstract

Plastic flow and microstructure evolution during sub- and supersolvus forging and subsequent supersolvus heat treatment of the powder-metallurgy superalloy LSHR (low-solvus, high-refractory) were investigated to develop an understanding of methods that can be used to obtain a moderately coarse gamma grain size under well-controlled conditions. To this end, isothermal, hot compression tests were conducted over broad ranges of temperature [(1144 K to 1450 K) 871 °C to 1177 °C] and constant true strain rate (0.0005 to 10 s−1). At low temperatures, deformation was generally characterized by flow softening and dynamic recrystallization that led to a decrease in grain size. At high subsolvus temperatures and low strain rates, steady-state flow or flow hardening was observed. These latter behaviors were ascribed to superplastic deformation and microstructure evolution characterized by a constant grain size or concomitant dynamic grain growth, respectively. During supersolvus heat treatment following subsolvus deformation, increases in grain size whose magnitude was a function of the prior deformation conditions were noted. A transition in flow behavior from superplastic to nonsuperplastic and the development during forging at a high subsolvus temperature of a wide (possibly bi- or multimodal) gamma-grain-size distribution having some large grains led to a substantially coarser grain size during supersolvus annealing in comparison to that produced under all other forging conditions.

References

  1. 1.
    M.J. Donachie, Jr., ed., Superalloys Source Book, ASM International, Materials park, OH, 1984.Google Scholar
  2. 2.
    J. Gayda, T.P. Gabb, and P.T. Kantzos: US Patent 6,660,110, December 2003.Google Scholar
  3. 3.
    S.L. Semiatin and D.R. Barker: US Patent 5,447,580, September 1995.Google Scholar
  4. 4.
    G.F. Mathey: US Patent 5,312,497, May 1994.Google Scholar
  5. 5.
    S. Ganesh and R.G. Tolbert: US Patent 5,527,020, June 1996.Google Scholar
  6. 6.
    J. Lemsky: Unpublished research, Ladish Co., Cudahy, WI, 2006.Google Scholar
  7. 7.
    J-P.A. Immarigeon and P.H. Floyd: Metall. Trans. A, 1981, vol. 12A, pp. 1177- 1186.Google Scholar
  8. 8.
    Y. Combres and C. Levaillant: Inter. J. Plasticity, 1990, vol. 6, pp. 505-519.CrossRefGoogle Scholar
  9. 9.
    A.K. Koul and J-P.A. Immarigeon: Acta Metall., 1987, vol. 35, pp. 1791-1805.CrossRefGoogle Scholar
  10. 10.
    M.O. Alniak and F. Bedir: Mater. Sci. Eng. A, 2006, vol. A429, pp. 295-303.Google Scholar
  11. 11.
    M.O. Alniak and F. Bedir: Mater. Sci. Eng. B, 2006, vol. B130, pp. 254-263.CrossRefGoogle Scholar
  12. 12.
    W. Tu and T.M. Pollock: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S. A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 395–403.Google Scholar
  13. 13.
    W.J Tu: PhD Dissertation, University of Michigan, Ann Arbor, MI, 2010.Google Scholar
  14. 14.
    W.J. Tu and T.M. Pollock: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2002-2009.CrossRefGoogle Scholar
  15. 15.
    J.W. Martin, R.D. Doherty, and B. Cantor: Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, UK, 1997.CrossRefGoogle Scholar
  16. 16.
    M. Soucail, M. Marty, and H. Ocor: Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, Warrendale, PA, 1996, pp. 663–666.Google Scholar
  17. 17.
    E. Huron, S. Shrivatsa, and E. Raymond: Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, Warrendale, PA, 2000, pp. 49–58.Google Scholar
  18. 18.
    E.J. Payton: PhD Dissertation, The Ohio State University, Columbus, OH, 2009.Google Scholar
  19. 19.
    P.R. Rios: Acta Mater., 1997, vol. 45, pp. 1785-1789.CrossRefGoogle Scholar
  20. 20.
    K. Song and M. Aindow: Proc. Materials Science and Technology (MS&T) 2006: Fundamentals and Characterization, Vol. 2, Z-K. Lu, C.E. Campbell, L.Q. Chen, E.B. Damm, J.E. Morral, and J.L. Murray, eds., TMS, Warrendale, PA, 2006, pp. 211–20.Google Scholar
  21. 21.
    G. Wang, D.S. Xu, E.J. Payton, N. Ma, R. Yang, M.J. Mills, and Y. Wang: Acta Mater., 2011, vol. 59, pp. 4587-4594.CrossRefGoogle Scholar
  22. 22.
    T.P. Gabb, J. Gayda, and J. Falsey: Report NASA/TM-2005-213649, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, June 2005. (Available electronically at http://gltrs.grc.nasa.gov).
  23. 23.
    D.D. Krueger, R.D. Kissinger, R.G. Menzies, and C.S. Wukusick: US Patent 4,957,567, September 1990.Google Scholar
  24. 24.
    E.L. Raymond, R.D. Kissinger, A.J. Paxson, and E.S. Huron: US Patent 5,584,947, December 1996.Google Scholar
  25. 25.
    E.S. Huron, J.A. Heaney, D.P. Mourer, J.R. Groh, E.L. Raymond, D.A. Utah, M.J. Weimer, and K.R. Bain: US Patent Application 11/770,257, January 2009.Google Scholar
  26. 26.
    D.P. Mourer and K.R. Bain: US Patent Application 12/494,896, December 2010.Google Scholar
  27. 27.
    S.L. Semiatin, K. E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, and T.P. Gabb: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1649-1661.CrossRefGoogle Scholar
  28. 28.
    J. Gayda, T.P. Gabb, and P.T. Kantzos: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 323–30.Google Scholar
  29. 29.
    J. Lemsky: Report NASA/CR-2005-213574, Ladish Company, Inc., Cudahy, WI, February 2005. (Available electronically at http://gltrs.grc.nasa.gov).
  30. 30.
    S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.Google Scholar
  31. 31.
    A.A. Salem, M.G. Glavicic, and S.L. Semiatin: Mater. Sci. Eng. A, 2008, vol. A494, pp. 350-359.Google Scholar
  32. 32.
    E.J. Payton, P.J. Phillips, and M.J. Mills: Mater. Sci. Eng. A, 2010, vol. A527, pp. 2684-2692.Google Scholar
  33. 33.
    J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229-240.Google Scholar
  34. 34.
    J. Dennis, P.S. Bate, and F.J. Humphreys: Acta Mater., 2009, vol. 57, pp. 4539-4547.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • S. L. Semiatin
    • 1
  • K. E. McClary
    • 2
    • 3
  • A. D. Rollett
    • 4
  • C. G. Roberts
    • 5
  • E. J. Payton
    • 6
  • F. Zhang
    • 7
  • T. P. Gabb
    • 8
  1. 1.Air Force Research Laboratory, Materials and Manufacturing DirectorateAFRL/RXCM, Wright-Patterson Air Force BaseUSA
  2. 2.Physics DepartmentWright State UniversityDaytonUSA
  3. 3.The Hall CompanyUrbanaUSA
  4. 4.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  5. 5.Vallourec and Mannesmann USA CorporationYoungstownUSA
  6. 6.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  7. 7.Computherm, LLCMadisonUSA
  8. 8.NASA Glenn Research CenterClevelandUSA

Personalised recommendations