Metallurgical and Materials Transactions A

, Volume 44, Issue 7, pp 3303–3321 | Cite as

Microstructure and Texture Evolution During Sub-Transus Thermomechanical Processing of Ti-6Al-4V-0.1B Alloy: Part I. Hot Rolling in (α + β) Phase Field

  • Shibayan Roy
  • Satyam Suwas


In the current study, the evolution of microstructure and texture has been studied for Ti-6Al-4V-0.1B alloy during sub-transus thermomechanical processing. This part of the work deals with the deformation response of the alloy by rolling in the (α + β) phase field. The (α + β) annealing behavior of the rolled specimen is communicated in part II. Rolled microstructures of the alloys exhibit either kinked or straight α colonies depending on their orientations with respect to the principal rolling directions. The Ti-6Al-4V-0.1B alloy shows an improved rolling response compared with the alloy Ti-6Al-4V because of smaller α lamellae size, coherency of α/β interfaces, and multiple slip due to orientation factors. Accelerated dynamic globularization for this alloy is similarly caused by the intralamellar transverse boundary formation via multiple slip and strain accumulation at TiB particles. The (0002)α pole figures of rolled Ti-6Al-4V alloy shows “TD splitting” at lower rolling temperatures because of strong initial texture. Substantial β phase mitigates the effect of starting texture at higher temperature so that “RD splitting” characterizes the basal pole figure. Weak starting texture and easy slip transfer for Ti-6Al-4V-0.1B alloy produce simultaneous TD and RD splittings in basal pole figures at all rolling temperatures.


Pole Figure Texture Component Texture Evolution Orientation Distribution Function Rolling Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors like to acknowledge the required research facilities provided by the Institute Nanoscience Initiative (INI) and Institute X-ray Facility at Indian Institute of Science, Bangalore, India; and the National facility for orientation imaging microscopy and X-ray bulk texture at the Indian Institute of Technology Bombay. The materials used for the study were originally procured from Dr. Dan Miracle of AFRL and Dr. S. Tamirisakanda of FMW Composites. The authors gratefully acknowledge the same. The authors are thankful to Mr. Natraj B.R. and Mr. V. Tungala for their assistance in conducting the rolling experiments.


  1. 1.
    R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103–14.CrossRefGoogle Scholar
  2. 2.
    G. Lütjering: Mater. Sci. Eng. A, 1998, vol. 243, pp. 32-45.CrossRefGoogle Scholar
  3. 3.
    M.G. Glavicic, P.A. Kobryn, F. Spadafora and S.L. Semiatin: Mater. Sci. Eng. A, 2003, vol. 346, pp. 8-18.CrossRefGoogle Scholar
  4. 4.
    J. Zhu, A. Kamiya, T. Yamada, W. Shi and K. Naganuma: Mater. Sci. Eng. A, 2003, vol. 339, pp. 53-62.CrossRefGoogle Scholar
  5. 5.
    S. Tamirisakandala, R.B. Bhat, J.S. Tiley and D.B. Miracle: Scripta Mater., 2005, vol. 53, pp. 1421-26.CrossRefGoogle Scholar
  6. 6.
    S. Roy, S. Suwas, S. Tamirisakandala, D.B. Miracle and R. Srinivasan (2011) Acta Mater. 59(14):5494–5510.CrossRefGoogle Scholar
  7. 7.
    T.M.T Godfrey, A Wisbey, P.S Goodwin, K Bagnall and C.M Ward-Close (2000) Mater. Sci. Eng. A 282:240–50.CrossRefGoogle Scholar
  8. 8.
    I. Sen, S. Tamirisakandala, D.B. Miracle, U. Ramamurty (2007) Acta Mater. 55:4983–93.CrossRefGoogle Scholar
  9. 9.
    C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney and D.B. Miracle: Scripta Mater., 2006, vol. 55, pp. 465-68.CrossRefGoogle Scholar
  10. 10.
    C.J. Boehlert and W. Chen: Mater. Trans., 2009, Vol. 50, pp. 1690–1703.CrossRefGoogle Scholar
  11. 11.
    W. Chen, and C.J. Boehlert: Mater. Sci. Eng. A, (2008), vol. 494, pp. 132-38.CrossRefGoogle Scholar
  12. 12.
    W. Chen, C.J. Boehlert, E.A. Payzant and J.Y. Howe: Int. J. Fatigue, 2010, vol. 32, pp. 627-38.CrossRefGoogle Scholar
  13. 13.
    W. Chen and C.J. Boehlert: Mater. Charact., 2011, vol. 62, pp. 333-39.CrossRefGoogle Scholar
  14. 14.
    S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan and D.B. Miracle: Supplemental Proceedings TMS, 2009, vol. 3, pp. 63-70.Google Scholar
  15. 15.
    S. Roy and S. Suwas: J. Alloy. Compd., 2013, vol. 548, pp. 110-125.CrossRefGoogle Scholar
  16. 16.
    A. Sarkar, S. Roy and S. Suwas: Mater. Charact., 2011, vol. 62(1), pp. 35–42.CrossRefGoogle Scholar
  17. 17.
    S. Roy, A. Sarkar and S. Suwas: Mater. Sci. Eng. A, 2010, vol. 528, pp. 449–58.CrossRefGoogle Scholar
  18. 18.
    S. Roy and S. Suwas: Mater. Sci. Eng. A, 2012, vol. 540, pp. 152-63.CrossRefGoogle Scholar
  19. 19.
    A.A. Salem, M.G. Glavicic and S.L. Semiatin: Mater. Sci. Eng. A, 2008, vol. 494, pp. 350-59.CrossRefGoogle Scholar
  20. 20.
    H.P. Lee, C. Esling and H.J. Bunge: Texures Microstruct., 1988, vol. 7, pp. 317-37.CrossRefGoogle Scholar
  21. 21.
    S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev and S.L. Semiatin: Acta Mater., 2009, vol. 57, pp. 2470-81.CrossRefGoogle Scholar
  22. 22.
    H. Inagaki: Z. Met.: 1990, vol. 81, pp. 433-45.Google Scholar
  23. 23.
    M. Peters and G. Luetjering: in Titanium 80: Science and Technology, H. Kimura, O. Izumi, eds., Metallurgical Society of AIME, New York, 1980, pp. 925–38.Google Scholar
  24. 24.
    H. Inoue, S. Fukwshima and N. Inakazu, Mater. Trans., 1992, vol. 33, pp. 129–37.Google Scholar
  25. 25.
    H. Inoue and N. Inakazu: in Proceedings of the Eighth International Conference on Textures of Materials (ICOTOM 8), J.S. Kellend and G. Gottstein, eds., The Metallurgical Society, 1988, pp. 997–1002.Google Scholar
  26. 26.
    K. Morii, H. Mecking, G. Lütjering and Y. Nakayama: Scripta Metall., 1986, vol. 20, pp. 1795–00.CrossRefGoogle Scholar
  27. 27.
    A. Tanabe, T. Nishimura and M. Fukuda: in Titanium 80: Science and Technology, H. Kimura and O. Izumi, eds., Metallurgical Society of AIME, New York, 1980, pp. 937–45.Google Scholar
  28. 28.
    P. Ari-Gur and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 257, pp. 118-27.CrossRefGoogle Scholar
  29. 29.
    J.-H. Song, K.-J. Hong, T.K. Ha and H.T. Jeong: Mater. Sci. Eng. A, 2007, vol. 449-451, pp. 144-48.Google Scholar
  30. 30.
    R. Srinivasan, D.B. Miracle and S. Tamirisakandala: Mater. Sci. Eng. A, 2008, vol. 487, pp. 541-51.CrossRefGoogle Scholar
  31. 31.
    R. Srinivasan, M.D. Bennett, S. Tamirisakandala, D.B. Miracle, K.-O Yu and F. Sun: J. Mater. Eng. Perform., 2009, vol. 18, pp. 390-398.CrossRefGoogle Scholar
  32. 32.
    S. Roy, V. Tungla and S. Suwas, Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2535–41.CrossRefGoogle Scholar
  33. 33.
    M.G. Glavicic, J.D. Miller and S.L. Semiatin: Scripta Mater., 2006, vol. 54, pp. 281-86.CrossRefGoogle Scholar
  34. 34.
    K. Pawlik: Phys. Status Solidi B, 1986, vol. 134, pp. 477-83.CrossRefGoogle Scholar
  35. 35.
    S. Suwas and A. K. Singh: Mater. Sci. Eng. A, 2003, vol. 355, pp. 331–37.CrossRefGoogle Scholar
  36. 36.
    S. Suwas and A.K. Sing: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 925-38.CrossRefGoogle Scholar
  37. 37.
    S. Suwas, R.K. Ray, A. K. Singh and S. Bhargava: Acta Mater., 1999, vol. 47, pp. 4585-98.CrossRefGoogle Scholar
  38. 38.
    S. Suwas, A. K. Singh, R.K. Ray and S. Bhargava: Scripta Mater., 1996, vol. 35, pp. 897-902.CrossRefGoogle Scholar
  39. 39.
    S. Suwas and R. K. Ray: Acta Mater., 1999, vol. 47, pp. 4599-4614.CrossRefGoogle Scholar
  40. 40.
    N.P. Gurao, A. A. Ali and S. Suwas: Mater. Sci. Eng. A, 2009, vol. 504, pp. 24-35.CrossRefGoogle Scholar
  41. 41.
    T.R. Bieler, M.G. Glavicic and S. L. Semiatin: J. Met., 2002, vol. 54, pp. 31-36.Google Scholar
  42. 42.
    T.R. Bieler and S.L. Semiatin: Int. J. Plast., 2002, vol. 18, pp. 1165-89.CrossRefGoogle Scholar
  43. 43.
    A.A. Salem and S.L. Semiatin: Mater. Sci. Eng. A, 2009, vol. 508, pp. 114–20.CrossRefGoogle Scholar
  44. 44.
    J.J. Kearns: J. Nucl. Mater., 2001, vol. 299, pp. 171-74.CrossRefGoogle Scholar
  45. 45.
    K. Linga-Murty and I. Charit: Prog. Nucl. Energy, 2006, vol. 48, pp. 325–59.CrossRefGoogle Scholar
  46. 46.
    N. Bayona-Carrillo, N. Bozzolo, J.J. Fundenberger, B. Thomas, P. Camelin, E. Lenarduzzi and F. Wagner: Adv. Eng. Mater., 2011, vol. 13, pp. 383-87.CrossRefGoogle Scholar
  47. 47.
    T. Furuhara, H. J. Lee, E. S. K. Menon and H. I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1627–43.Google Scholar
  48. 48.
    T. Furuhara, T. Ogawa and T. Maki: Philos. Mag. Lett., 1995, vol. 72, pp. 175-83.CrossRefGoogle Scholar
  49. 49.
    S. Suri, G.B. Viswanathan, T. Neeraj, D.-H. Hou and M.J. Mills: Acta Mater., 1999, vol. 47, pp. 1019-34.CrossRefGoogle Scholar
  50. 50.
    S. Zherebtsov, M. Murzinova, G. Salishchev and S.L. Semiatin: Acta Mater., 2011, vol. 59, pp. 4138-50.CrossRefGoogle Scholar
  51. 51.
    S.L Semiatin and T.R Bieler: Acta Mater., 2001, vol. 49, pp. 3565-73.CrossRefGoogle Scholar
  52. 52.
    I. Weiss, F. H. Froes, D. Eylon and G. E. Welsch: Metall. Trans. A, 1985, vol. 17A, pp. 1935-47.Google Scholar
  53. 53.
    N. Stefansson and S.L. Semiatin: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 691-98.CrossRefGoogle Scholar
  54. 54.
    S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker and F. Zhang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377-86.CrossRefGoogle Scholar
  55. 55.
    H. Feng, Y. Zhou, D. Jia and Q. Meng: Scripta Mater., 2006, vol. 55, pp. 667-70.CrossRefGoogle Scholar
  56. 56.
    N. Bozzolo, N. Dewobroto, T. Grosdidier and F. Wagner: Mater. Sci. Eng. A, 2005, vol. 397, pp. 346-55.CrossRefGoogle Scholar
  57. 57.
    G. I. Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307–24.Google Scholar
  58. 58.
    H. Inagaki: Z. Met., 1990, vol. 81, pp. 282–92.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Institut für Werkstoffwissenschaft und WerkstofftechnikChemnitz University of TechnologyChemnitzGermany

Personalised recommendations