Metallurgical and Materials Transactions A

, Volume 44, Issue 7, pp 3136–3146 | Cite as

Constitutive Modeling of the Mechanical Properties of V-added Medium Manganese TRIP Steel

  • Seawoong Lee
  • Yuri Estrin
  • Bruno C. De CoomanEmail author


In this study, medium Mn transformation-induced plasticity steel with the composition Fe-0.08 pct C-6.15 pct Mn-1.5 pct Si-2.0 pct Al-0.08 pct V was investigated. After intercritical annealing at 1013 K (740 °C), the steel contained coarse-grained ferrite and two ultrafine-grained (UFG) phases: ferrite and retained austenite. The material did not deform by localized Lüders band propagation: it did not suffer from this major problem as most UFG steels do. Localization of plastic flow was shown to be suppressed because of a combination of factors, including a bimodal grain size distribution, a multiphase microstructure, the presence of nanosized vanadium carbide precipitates, and the occurrence of the deformation-induced martensitic transformation of retained austenite. A constitutive model incorporating these effects was developed. The model was used to identify the factors which can lead to a further improvement of the mechanical properties of the UFG medium Mn TRIP steels.


Ferrite Austenite Martensite Intercritical Annealing Martensite Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-10147 and R31-2008-000-10075-0).


  1. 1.
    J. M. Jang, S. J. Kim, N. H. Kang, K. M. Cho, D. W. Suh, Met. Mater. Int., 15 (2009), pp. 909-916.CrossRefGoogle Scholar
  2. 2.
    D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, S. J. Kim, Metall. Mater. Trans. A, 41A (2010), pp. 397-408.CrossRefGoogle Scholar
  3. 3.
    M.J. Merwin: Mater. Sci. Tech. (MS&T), Michigan, 2007, pp. 515–36.Google Scholar
  4. 4.
    S. Lee, S. J. Lee, B. C. De Cooman, Acta. Mater., 59 (2011), pp. 7546-7553.CrossRefGoogle Scholar
  5. 5.
    S. Lee, S. J. Lee, B. C. De Cooman, Scripta Mater., 65 (2011), pp. 225-228.CrossRefGoogle Scholar
  6. 6.
    S. Lee, S. J. Lee, S. S. Kumar, K. Lee, B. C. De Cooman, Metall. Mater. Trans. A, 42A (2011), pp. 3638-3651.CrossRefGoogle Scholar
  7. 7.
    R. L. Miller, Metall. Trans., 3 (1972), pp.515-535.Google Scholar
  8. 8.
    U. R. Tsuji, N, Y. Minamino, Y. Saito, Scripta Mater., 46 (2002), pp.893-899.CrossRefGoogle Scholar
  9. 9.
    R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Acta Mater, 50 (2002), pp. 4177-4189.CrossRefGoogle Scholar
  10. 10.
    S. Torizuka, A. Ohmori, and K. Nagai: ISIJ Int., 2004, vol. 6, pp. 1063–71.Google Scholar
  11. 11.
    T. Hayashi and K. Nagai: Trans. Jpn. Soc., Mech. Eng. A, 2002, vol. 68, p. 1553.Google Scholar
  12. 12.
    Y. Wang, M. Chen, F. Zhou, E. Ma: Nature, 419 (2002), pp. 912-915.CrossRefGoogle Scholar
  13. 13.
    N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scripta Mater, 47 (2002), pp. 893-899.CrossRefGoogle Scholar
  14. 14.
    R. D. K. Misra, S. Nayak, S. A. Mali, J. S. Shah, M. C. Somani, L.P. Karjalainen, Metall. Mater. Trans. A, 40A (2009), pp. 2498-2509.CrossRefGoogle Scholar
  15. 15.
    E. Ma, JOM, 58 (2006), pp. 49-53.CrossRefGoogle Scholar
  16. 16.
    H. Mecking, U.F. Kocks, Acta Metall., 29 (1981), pp. 1865-1875.CrossRefGoogle Scholar
  17. 17.
    Y. Estrin, H. Mecking, Acta Metall., 32 (1984), pp. 57-70.CrossRefGoogle Scholar
  18. 18.
    S.-J. Lee. J. Jung, S. Kim, and B.C. De Cooman: Steel Res. Int., 82 (2011), pp. 857–65.CrossRefGoogle Scholar
  19. 19.
    J.G. Speer and B.C. De Cooman: Fundamentals of Steel Product Physical Metallurgy, AIST, 2011.Google Scholar
  20. 20.
    P. S. Follansbee, Metall. Mater. Trans. A, 41A (2010), pp. 3080-3090.CrossRefGoogle Scholar
  21. 21.
    O. Bouaziz, Y. Estrin, Y. Brechet, J.D. Embury, Scripta Mater., 63 (2010), pp. 477-479.CrossRefGoogle Scholar
  22. 22.
    D. W. James, G.M. Leak, Phil. Mag., 12 (1965), pp. 491-503.CrossRefGoogle Scholar
  23. 23.
    T. Gladman, Mater. Sci. Tech-Lond, 15 (1999), pp. 30-36.CrossRefGoogle Scholar
  24. 24.
    J. P. Hirth, J. Lothe, Theory of Dislocations, Wiley, New York, USA, 1992.Google Scholar
  25. 25.
    I. Gutierrez: Metalurgija, vol. 11, 2005, p. 201.Google Scholar
  26. 26.
    G. R. Speich, J. Warlimont, Iron Steel Inst., 206 (1968), p. 385.Google Scholar
  27. 27.
    A. Perlade, O. Bouaziz, Q. Furnèmont, Mater. Sci. Eng. A, A356 (2003), pp. 145-152.Google Scholar
  28. 28.
    M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, I. Tamura, Metall. Trans. A, 13 (1982), pp. 1379-1388.Google Scholar
  29. 29.
    S. Takaki, K. Takeda, N. Nakada, and T. Tsuchiyama: IAS 2008, Pohang, South Korea, B.C. De Cooman, N. Akdut, H.S. Kim, eds., 2008, p. 107.Google Scholar
  30. 30.
    S. Rajasekhara, P. J. Ferreira, L. P. Karjalainen, A. Kyröläinen, Metall. Trans. A, 38 (2007), pp. 1202-1210.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Seawoong Lee
    • 1
  • Yuri Estrin
    • 2
  • Bruno C. De Cooman
    • 1
    Email author
  1. 1.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangSouth Korea
  2. 2.Center for Advanced Hybrid Materials, Department of Materials EngineeringMonash UniversityClaytonAustralia

Personalised recommendations