Advertisement

In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni

Significant microstructural damage, in the form of defect clusters, typically occurs in metals subjected to heavy ion irradiation. High angle grain boundaries (GBs) have long been postulated as sinks for defect clusters, like dislocation loops. Here, we provide direct evidence, via in situ Kr ion irradiation within a transmission electron microscope, that high angle GBs in nanocrystalline (NC) Ni, with an average grain size of ~55 nm, can effectively absorb irradiation-induced dislocation loops and segments. These high angle GBs significantly reduce the density and size of irradiation-induced defect clusters in NC Ni compared to their bulk counterparts, and thus NC Ni achieves significant enhancement of irradiation tolerance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    G. Was: Fundamentals of Radiation Materials Science, Springer, New York, 2007.

  2. 2.

    H. R. Brager and J. L. Straalsund, J. Nucl. Mater., 1973, vol. 46, pp. 134-158.

  3. 3.

    E. Wakai, N. Hashimoto, J. P. Robertson, T. Sawai and A. Hishinuma, J. Nucl. Mater., 2002, vol. 307-311, pp. 352-356.

  4. 4.

    T. R. Allen, J. Gan, J. I. Cole, M. K. Miller, J. T. Busby, S. Shutthanandan and S. Thevuthasan, J. Nucl. Mater., 2008, vol. 375, pp. 26-37.

  5. 5.

    T. Yamamoto, G.R. Odette, P. Miao, D.T. Hoelzer, J. Bentley, N. Hashimoto, H. Tanigawa and R.J. Kurtz: J. Nucl. Mater., 2007, vol. 367–370, Part A, pp. 399–10.

  6. 6.

    J. Saito, T. Suda, S. Yamashita, S. Ohnuki, H. Takahashi, N. Akasaka, M. Nishida and S. Ukai, J. Nucl. Mater., 1998, vol. 258–263, Part 2, pp. 1264–68.

  7. 7.

    X. Zhang, Nan Li, O. Anderoglu, H. Wang, J. G. Swadener, T. Höchbauer, A. Misra and R. G. Hoagland, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, vol. 261, pp. 1129-1132.

  8. 8.

    M. J. Demkowicz, R. G. Hoagland and J. P. Hirth, Phys. Rev. Lett., 2008, vol. 100, pp. 136102.

  9. 9.

    N. Li, J. J. Carter, A. Misra, L. Shao, H. Wang and X. Zhang, Philos. Mag. Lett., 2011, vol. 91, pp. 18-28.

  10. 10.

    E. G. Fu, A. Misra, H. Wang, Lin Shao and X. Zhang, J. Nucl. Mater., 2010, vol. 407, pp. 178-188.

  11. 11.

    Q. M. Wei, N. Li, N. Mara, M. Nastasi and A. Misra, Acta Mater., 2011, vol. 59, pp. 6331-6340.

  12. 12.

    H. Trinkaus and B. N. Singh, J. Nucl. Mater., 2003, vol. 323, pp. 229-242.

  13. 13.

    T.D. Shen, Nucl. Instrum. Methods Phys. Res. B, 2008, vol. 266, pp. 921–25.

  14. 14.

    M. Rose, A.G. Balogh, and H. Hahn: Nucl. Instrum. Methods Phys. Res. B, 1997, vol. 127–128, pp. 119–22.

  15. 15.

    C. Sun, K. Y. Yu, J. H. Lee, Y. Liu, H. Wang, L. Shao, S. A. Maloy, K. T. Hartwig and X. Zhang, J. Nucl. Mater., 2012, vol. 420, pp. 235-240.

  16. 16.

    K. Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E. G. Fu and X. Zhang, J. Nucl. Mater., 2012, vol. 425, pp. 140-146.

  17. 17.

    M. Samaras, P. M. Derlet, H. Van Swygenhoven and M. Victoria, Phys. Rev. Lett., 2002, vol. 88, pp. 125505.

  18. 18.

    X. M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi and B. P. Uberuaga, Science, 2010, vol. 327, pp. 1631-1634.

  19. 19.

    B. N. Singh, Philos. Mag., 1974, vol. 29, pp. 25 - 42.

  20. 20.

    T. D. Shen, S. Feng, M. Tang, J. A. Valdez, Y. Q. Wang and K. E. Sickafus, Appl. Phys. Lett., 2007, vol. 90, pp. 263115.

  21. 21.

    A. R. Kilmametov, D. V. Gunderov, R. Z. Valiev, A. G. Balogh and H. Hahn, Scripta Mater., 2008, vol. 59, pp. 1027-1030.

  22. 22.

    Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami and S. Okuda, J. Nucl. Mater., 2001, vol. 297, pp. 355-357.

  23. 23.

    B. Radiguet, A. Etienne, P. Pareige, X. Sauvage and R. Valiev, J. Mater. Sci., 2008, vol. 43, pp. 7338-7343.

  24. 24.

    W. Voegeli, K. Albe and H. Hahn, Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 202, pp. 230-235.

  25. 25.

    D. Kaoumi, A. T. Motta and R. C. Birtcher, J. Appl. Phys., 2008, vol. 104, pp. 073525.

  26. 26.

    H. A. Atwater, C. V. Thompson and H. I. Smith, J. Appl. Phys., 1988, vol. 64, pp. 2337-2353.

  27. 27.

    D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 2009.

  28. 28.

    J.P. Biersack, J.F. Ziegler, and M.D. Ziegler: Calculation Using the Stopping and Range of Ions in Matter (SRIM) Code. http://www.srim.org/, 2008.

  29. 29.

    R. C. Birtcher, M. Kirk, K. Furuya, G. R. Lumpkin and M-O. Ruault, J. Mater. Res., 2005, vol. 20, pp. 1654-1683.

  30. 30.

    R. Sizmann, J. Nucl. Mater., 1978, vol. 69–70, pp. 386-412.

  31. 31.

    J. P. Hirth and J. Lothe: Theory of dislocations, Wiley, New York, 1982.

  32. 32.

    P. T. Heald and J. E. Harbottle, J. Nucl. Mater., 1977, vol. 67, pp. 229-233.

  33. 33.

    S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B, 1986, vol. 33, pp. 7983-7991.

  34. 34.

    A. Hardouin Duparc, C. Moingeon, N. Smetniansky-de-Grande and A. Barbu, J. Nucl. Mater., 2002, vol. 302, pp. 143-155.

  35. 35.

    B. D. Wirth, G. R. Odette, D. Maroudas and G. E. Lucas, J. Nucl. Mater., 2000, vol. 276, pp. 33-40.

  36. 36.

    S. Chandrasekhar, Rev. Mod. Phys., 1943, vol. 15, pp. 1-89.

  37. 37.

    K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi and H. Mori, Science, 2007, vol. 318, pp. 956-959.

  38. 38.

    E. Kuramoto, J. Nucl. Mater., 2000, vol. 276, pp. 143-153.

  39. 39.

    E. W. Hart, Acta Metall., 1957, vol. 5, pp. 597.

  40. 40.

    R. W. Balluffi, physica status solidi (b), 1970, vol. 42, pp. 11-34.

Download references

Acknowledgments

We acknowledge financial support by the DOE-NEUP under contract no. DE-AC07-05ID14517-00088120. Partial support by the US Army Research Office—Materials Science Division—is also acknowledged under contract no. W911NF-09-1-0223. We also thank John Hirth and Lin Shao for their helpful discussions.

Author information

Correspondence to X. Zhang.

Additional information

Manuscript submitted April 9, 2012.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video #1: Absorption of an individual dislocation loop by the GB. The dislocation loop is rapidly absorbed by the GB. Loops far away from GBs can recombine with the opposite type of defect clusters, be absorbed by free surface, or aggregate to form a larger cluster (WMV 2770 kb)

Video #2: Absorption of dislocation segment by the GB. The combination of dislocation loops in NC Ni, followed by their gradual absorption by adjacent GBs (WMV 3684 kb)

Video #1: Absorption of an individual dislocation loop by the GB. The dislocation loop is rapidly absorbed by the GB. Loops far away from GBs can recombine with the opposite type of defect clusters, be absorbed by free surface, or aggregate to form a larger cluster (WMV 2770 kb)

Video #2: Absorption of dislocation segment by the GB. The combination of dislocation loops in NC Ni, followed by their gradual absorption by adjacent GBs (WMV 3684 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, C., Song, M., Yu, K.Y. et al. In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni. Metall and Mat Trans A 44, 1966–1974 (2013) doi:10.1007/s11661-013-1635-9

Download citation

Keywords

  • Dislocation Loop
  • Defect Cluster
  • Dislocation Segment
  • Pipe Diffusion
  • Frank Loop